石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (4): 1054-1066.doi: 10.11743/ogg20230420
张坦(), 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇
收稿日期:
2022-12-12
修回日期:
2023-03-27
出版日期:
2023-08-01
发布日期:
2023-08-09
第一作者简介:
张坦(1994—),男,工程师,构造与油气成藏。E-mail:基金项目:
Tan ZHANG(), Wei YAO, Yongqiang ZHAO, Yushuang ZHOU, Jiwen HUANG, Xinyu FAN, Yu LUO
Received:
2022-12-12
Revised:
2023-03-27
Online:
2023-08-01
Published:
2023-08-09
摘要:
古地貌的精确恢复对于寻找优质储层及烃源岩优势相带起着十分重要的作用,而剥蚀厚度计算又是古地貌恢复研究中的核心步骤。基于自然伽马曲线数据,利用频谱分析、连续小波变换和经验模态分解等技术手段,建立了塔里木盆地巴麦地区石炭系卡拉沙依组具有相对时间概念的“浮动”天文年代标尺和高精度的地层层序格架,并进一步精确计算了石炭系卡拉沙依组剥蚀厚度。结果显示:①巴麦地区石炭系卡拉沙依组沉积时受天文轨道周期的控制,保存有完整的米兰科维奇旋回;②经验模态分解方法得出的固有模态分量imf3与长偏心率(e1)控制下的地层旋回个数基本一致,据此建立了研究区具有相对时间概念的“浮动”天文年代标尺和高精度的地层层序格架;③基于经验模态分解方法计算的结果,结合不同地区钻井缺失旋回数量和平均旋回厚度之间的关系,精确计算了研究区内石炭系卡拉沙依组剥蚀厚度;④研究区内石炭系卡拉沙依组剥蚀厚度在0 ~ 390 m,剥蚀强度整体表现为“西强东弱”的特征,中部BT5井附近斜坡区域,易形成良好的储集体,是下一步有利的勘探区域。研究提出的思路和方法为类似地区高频地层层序格架的构建、“浮动”天文年代标尺的建立及地层剥蚀厚度的精细计算等提供了参考。
中图分类号:
表2
巴麦地区石炭系卡拉沙依组识别主频与对应米兰科维奇周期的比值"
井名 | 旋回参数 | 主导频率/(1/m) | 主导周期比值 | 天文旋回周期比值 | 单个旋回厚度/m | 误差率/% |
---|---|---|---|---|---|---|
YB1 | e1 | 0.019 5 | 12.03 | 12.17 | 6.410 | 1.17 |
e2 | 0.062 5 | 3.75 | 3.76 | 2.000 | 0.10 | |
e3 | 0.082 0 | 2.86 | 2.85 | 1.524 | 0.19 | |
o1 | 0.191 4 | 1.23 | 1.24 | 0.653 | 1.48 | |
o2 | 0.234 4 | 1 | 1 | 0.533 | 0.05 | |
YB8 | e1 | 0.019 5 | 11.43 | 12.17 | 6.410 | 6.11 |
e2 | 0.062 1 | 3.59 | 3.76 | 2.013 | 4.47 | |
e3 | 0.074 2 | 3.00 | 2.85 | 1.685 | 5.20 | |
o1 | 0.191 4 | 1.16 | 1.24 | 0.653 | 6.40 | |
o2 | 0.222 7 | 1 | 1 | 0.561 | 0.05 | |
HT1 | e1 | 0.021 5 | 12.17 | 12.17 | 5.814 | 0 |
e2 | 0.068 3 | 3.83 | 3.76 | 1.830 | 1.86 | |
e3 | 0.093 8 | 2.79 | 2.85 | 1.333 | 2.26 | |
o1 | 0.209 0 | 1.25 | 1.24 | 0.598 | 0.68 | |
o2 | 0.261 7 | 1 | 1 | 0.478 | 0.00 | |
H3 | e1 | 0.021 5 | 12.27 | 12.17 | 5.814 | 0.79 |
e2 | 0.068 4 | 3.86 | 3.76 | 1.827 | 2.65 | |
e3 | 0.091 8 | 2.87 | 2.85 | 1.362 | 0.63 | |
o1 | 0.207 0 | 1.27 | 1.24 | 0.604 | 2.44 | |
o2 | 0.263 7 | 1 | 1 | 0.474 | 0 |
表4
巴麦地区石炭系卡拉沙依组天文周期和剥蚀厚度"
井名 | 厚度/m | 长偏心率(e1)旋回数/个 | 平均旋回厚度/m | 缺失旋回数/个 | 剥蚀厚度/m |
---|---|---|---|---|---|
YB1 | 284.00 | 44.00 | 6.45 | 24.00 | 154.80 |
YB4 | 306.10 | 60.00 | 5.10 | 8.00 | 40.81 |
YB8 | 212.00 | 35.00 | 6.05 | 33.00 | 199.65 |
YB9 | 255.88 | 38.00 | 6.73 | 30.00 | 202.01 |
YB10 | 267.88 | 42.00 | 6.38 | 26.00 | 165.83 |
LN1 | 305.00 | 60.00 | 5.08 | 8.00 | 40.67 |
PSB2 | 262.00 | 44.00 | 5.95 | 24.00 | 142.91 |
BT4 | 55.00 | 9.00 | 6.11 | 59.00 | 360.56 |
BT5 | 204.00 | 33.00 | 6.18 | 35.00 | 216.36 |
BT6 | 66.00 | 11.00 | 6.00 | 57.00 | 342.00 |
BK8 | 24.00 | 4.00 | 6.00 | 64.00 | 384.00 |
Q5 | 284.00 | 42.00 | 6.76 | 26.00 | 175.81 |
J2 | 90.00 | 15.00 | 6.00 | 53.00 | 318.00 |
H2 | 379.00 | 64.00 | 5.92 | 4.00 | 23.69 |
H3 | 397.00 | 67.00 | 5.93 | 1.00 | 5.93 |
H4 | 216.00 | 35.00 | 6.17 | 33.00 | 203.66 |
HT1 | 393.00 | 66.00 | 5.95 | 2.00 | 11.91 |
BD4 | 351.00 | 58.00 | 6.05 | 10.00 | 60.52 |
K1 | 43.00 | 7.00 | 6.14 | 61.00 | 374.71 |
K2 | 117.00 | 20.00 | 5.85 | 48.00 | 280.80 |
1 | 李京昌, 吴疆, 何宏, 等. 塔里木盆地石炭系卡拉沙依组烃源岩研究[J]. 石油实验地质, 2017, 39(4): 511-519. |
LI Jingchang, WU Jiang, HE Hong, et al. Source rock characteristics of the Carboniferous Karashayi Formation in the Tarim Basin[J]. Petroleum Geology and Experiment, 2017, 39(4): 511-519. | |
2 | 黄智斌, 杜品德, 张师本, 等. 塔里木盆地石炭系卡拉沙依组的厘定[J]. 地层学杂志, 2005, 29(1): 55-61, 70. |
HUANG Zhibin, DU Pinde, ZHANG Shiben, et al. Revision of the carboniferous Kalashayi Formation of the Tarim Basin[J]. Journal of Stratigraphy, 2005, 29(1): 55-61, 70. | |
3 | 许杰, 何治亮, 郭建华, 等. 卡拉沙依组砂泥岩段层序地层及沉积体系[J]. 新疆地质, 2009, 27(2): 155-159. |
XU Jie, HE Zhiliang, GUO Jianhua, et al. Sequence stratigraphy and sedimentary system of Kalashayi Formation sandy mudstone member[J]. Xinjiang Geology, 2009, 27(2): 155-159. | |
4 | 曹强, 叶加仁, 王巍. 沉积盆地地层剥蚀厚度恢复方法及进展[J]. 中国石油勘探, 2007, 12(6): 41-46. |
CAO Qiang, YE Jiaren, WANG Wei. Methods of eroded strata thickness restoration in sedimentary basins and its advancement[J]. China Petroleum Exploration, 2007, 12(6): 41-46. | |
5 | 吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学(中国地质大学学报), 2011, 36(3): 409-428. |
WU Huaichun, ZHANG Shihong, FENG Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science(Journal of China University of Geoscience), 2011, 36(3): 409-428. | |
6 | 宋翠玉, 吕大炜. 米兰科维奇旋回时间序列分析法研究进展[J]. 沉积学报, 2022, 40(2): 380-395. |
SONG Cuiyu, Dawei LYU. Advances in time series analysis methods for Milankovitch cycles[J]. Acta Sedimentologica Sinica, 2022, 40(2): 380-395. | |
7 | HINNOV L A, OGG J G. Cyclostratigraphy and the astronomical time scale[J]. Stratigraphy, 2007, 4(2/3): 239-251. |
8 | 朱春霞, 张尚锋, 王雅宁, 等. 陆丰凹陷韩江组旋回地层学分析及天文年代标尺的建立[J]. 海洋地质前沿, 2022, 38(4): 42-52. |
ZHU Chunxia, ZHANG Shangfeng, WANG Yaning, et al. Cyclical stratigraphic analysis and establishment of astronomical chronograph of Hanjiang Formation in Lufeng Sag[J]. Marine Geology Frontiers, 2022, 38(4): 42-52. | |
9 | 马超, 王成善, 陈曦, 等. 藏南晚白垩世旋回地层学研究: 以定日贡扎剖面为例[J]. 地学前缘, 2009, 16(5): 134-142. |
MA Chao, WANG Chengshan, CHEN Xi, et al. Cyclostratigraphic study of the Upper Cretaceous of southern Tibet, China: A case study of Gongzha section[J]. Earth Science Frontiers, 2009, 16(5): 134-142. | |
10 | 彭军, 于乐丹, 许天宇, 等. 湖相泥页岩地层米氏旋回测井识别及环境响应特征[J]. 石油与天然气地质, 2022, 43(4): 957-969. |
PENG Jun, YU Ledan, XU Tianyu, et al. Logging identification of Milankovitch cycle and environmental response characteristics of lacustrine shale—A case study on Es4scs in Well Fanye 1, Dongying Sag, Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(4): 957-969. | |
11 | 高达, 林畅松, 胡明毅, 等. 利用自然伽马能谱测井识别碳酸盐岩高频层序——以塔里木盆地塔中地区T1井良里塔格组为例[J]. 沉积学报, 2016, 34(4): 707-715. |
GAO Da, LIN Changsong, HU Mingyi, et al. Using spectral gamma ray log to recognize high-frequency sequences in carbonate strata: A case study from the Lianglitage Formation from Well T1 in Tazhong area, Tarim Basin[J]. Acta Sedimentologica Sinica, 2016, 34(4): 707-715. | |
12 | 石巨业, 金之钧, 刘全有, 等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序 定量划分[J]. 石油与天然气地质, 2019, 40(6): 1205-1214. |
SHI Juye, JIN Zhijun, LIU Quanyou, et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 2019, 40(6): 1205-1214. | |
13 | 刘贤, 葛家旺, 赵晓明, 等. 东海陆架盆地西湖凹陷渐新统花港组年代标尺及层序界面定量识别[J]. 石油与天然气地质, 2022, 43(4): 990-1004. |
LIU Xian, GE Jiawang, ZHAO Xiaoming, et al. Time scale and quantitative identification of sequence boundaries for the Oligocene Huagang Formation in the Xihu Sag, East China Sea Shelf Basin[J]. Oil & Gas Geology, 2022, 43(4): 990-1004. | |
14 | WU Huaichun, ZHANG Shihong, HINNOV L A, et al. Time-calibrated Milankovitch cycles for the Late Permian[J]. Nature Communications, 2013, 4: 2452. |
15 | LI Mingsong, HUANG Chunju, HINNOV L, et al. Obliquity-forced climate during the Early Triassic hothouse in China[J]. Geology, 2016, 44(8): 623-626. |
16 | 郭颖, 汤良杰, 岳勇, 等. 旋回分析法在地层剥蚀量估算中的应用——以塔里木盆地玉北地区东部中下奥陶统鹰山组为例[J]. 中国矿业大学学报, 2015, 44(4): 664-672. |
GUO Ying, TANG Liangjie, YUE Yong, et al. Application of cycle analysis method to estimate the denuded strata thickness: A case study of Middle-Lower Ordovician Yingshan Formation of the eastern Yubei area, Tarim Basin[J]. Journal of China University of Mining & Technology, 2015, 44(4): 664-672. | |
17 | 赵军, 曹强, 付宪弟, 等. 基于米兰科维奇天文旋回恢复地层剥蚀厚度——以松辽盆地X油田青山口组为例[J]. 石油实验地质, 2018, 40(2): 260-267. |
ZHAO Jun, CAO Qiang, FU Xiandi, et al. Recovery of denuded strata thickness based on Milankovitch astronomical cycles: A case study of Qingshankou Formation in X Oilfield, Songliao Basin[J]. Petroleum Geology and Experiment, 2018, 40(2): 260-267. | |
18 | 刘高波, 施泽进, 佘晓宇. 巴楚-麦盖提的区域构造演化与油气分布规律[J]. 成都理工大学学报(自然科学版), 2004, 31(2): 157-161. |
LIU Gaobo, SHI Zejin, SHE Xiaoyu. Regional tectonic evolution and distribution of Bachu-Markit[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2004, 31(2): 157-161. | |
19 | 郭齐军, 赵省民. 塔河地区石炭系沉积特征[J]. 石油与天然气地质, 2002, 23(1): 99-102. |
GUO Qijun, ZHAO Shengmin. Depositional characteristics of carboniferous in Tahe region[J]. Oil & Gas Geology, 2002, 23(1): 99-102. | |
20 | 刘占红, 陈荣, 宋成兵, 等. 塔里木盆地石炭系卡拉沙依组旋回地层与层序地层综合研究[J]. 地球科学(中国地质大学学报), 2012, 37(5): 1051-1065. |
LIU Zhanhong, CHEN Rong, SONG Chengbing, et al. Cyclostratigraphy and sequence stratigraphy on carboniferous Karashayi Formation of Tarim Basin, China[J]. Earth Science(Journal of China University of Geoscience), 2012, 37(5): 1051-1065. | |
21 | 黄太柱, 蔡习尧, 郭书元. 塔里木盆地巴楚地区石炭纪地层问题讨论[J]. 石油实验地质, 2013, 35(6): 607-614. |
HUANG Taizhu, CAI Xiyao, GUO Shuyuan. Discussions on carboniferous stratigraphy of Bachu uplift, Tarim Basin[J]. Petroleum Geology and Experiment, 2013, 35(6): 607-614. | |
22 | ZHANG Jingyu, PAS D, KRIJGSMAN W, et al. Astronomical forcing of the Paleogene coal-bearing hydrocarbon source rocks of the East China Sea Shelf Basin[J]. Sedimentary Geology, 2020, 406: 105715. |
23 | 彭军, 于乐丹, 许天宇, 等. 天文地层学研究程序及其在渤海湾盆地东营凹陷的应用实例分析[J]. 石油与天然气地质, 2022, 43(6): 1292-1308. |
PENG Jun, YU Ledan, XU Tianyu, et al. Research procedure of astrostratigraphy and case study of Dongying Sag, Bohai Bay Basin[J].Oil & Gas Geology, 2022, 43(6): 1292-1308. | |
24 | HAMMER Ø, HARPER D A T, RYAN P D. PAST: Paleontological statistics software package for education and data analysis[J]. Palaeontologia Electronica, 2001, 4(1): 1-9. |
25 | SHI Siyu, DING Wenlong, ZHAO Gang, et al. Calculating the eroded thickness corresponding to a short-term tectonic uplift with Milankovitch theory: A case study of the Middle Permian Maokou Formation in southeastern Sichuan Basin, Southwest China[J]. ACS Omega, 2021, 6(11): 7558-7575. |
26 | DELAGE O, PORTAFAIX T, BENCHERIF H, et al. Empirical adaptive wavelet decomposition (EAWD): An adaptive decomposition for the variability analysis of observation time series in atmospheric science[J]. Nonlinear Processes in Geophysics, 2022, 29(3): 265-277. |
27 | STRASSER A H, HECKEL P H. Cyclostratigraphy concepts, definitions, and applications[J]. Newsletters on Stratigraphy, 2007, 42(2): 75-114. |
28 | BERGER A, LOUTRE M F, LASKAR J. Stability of the astronomical frequencies over the earth’s history for paleoclimate studies[J]. Science, 1992, 255(5044): 560-566. |
29 | 徐敬领, 霍家庆, 宋连腾, 等. 基于测井数据的米氏旋回分析及浮动天文年代标尺的建立[J]. 地球物理学报, 2022, 65(7): 2766-2778. |
XU Jingling, HUO Jiaqing, SONG Lianteng, et al. Analysis of Milankovitch cycles and establishment of floating astronomical date scale based on well-logging data[J]. Chinese Journal of Geophysics, 2022, 65(7): 2766-2778. | |
30 | 李江涛, 李增学, 余继峰, 等. 基于测井数据小波变换的层序地层对比——以鲁西和济阳地区石炭、二叠系含煤地层为例[J]. 沉积学报, 2005, 23(4): 639-645. |
LI Jiangtao, LI Zengxue, YU Jifeng, et al. Stratigraphic sequence correlation based on wavelet transform of well-logging data: Taking the coal-bearing strata of permo-carboniferous system in Luxi and Jiyang area as an example[J]. Acta Sedimentologica Sinica, 2005, 23(4): 639-645. | |
31 | 姜海健, 罗云, 李群, 等. 塔里木盆地麦盖提西部地区上石炭统不整合及储层发育模式[J]. 石油实验地质, 2017, 39(6): 776-782. |
JIANG Haijian, LUO Yun, LI Qun, et al. Upper carboniferous unconformity and reservoir development model of the western Maigaiti area, Tarim Basin[J]. Petroleum Geology and Experiment, 2017, 39(6): 776-782. | |
32 | 程逸凡, 董艳蕾, 朱筱敏, 等. 准噶尔盆地春光探区白垩纪古地貌恢复及其控砂机制[J]. 古地理学报, 2020, 22(6): 1127-1142. |
CHENG Yifan, DONG Yanlei, ZHU Xiaomin, et al. Cretaceous paleogeomorphology restoration and its controlling mechanism on sand-bodies in Chunguang exploration area, Junggar Basin[J]. Journal of Palaeogeography, 2020, 22(6): 1127-1142. | |
33 | 胡华蕊, 邢凤存, 齐荣, 等. 鄂尔多斯盆地杭锦旗地区晚古生代盆缘古地貌控砂及油气勘探意义[J]. 石油实验地质, 2019, 41(4): 491-497. |
HU Huarui, XING Fengcun, QI Rong, et al. Paleogeomorphologic features and their controls on sandbody distribution on basin margin during Late Paleozoic Era and significance for petroleum exploration, Hangjinqi area, Ordos Basin[J]. Peteoleum Geology and Experiment, 2019, 41(4): 491-497. | |
34 | 李进步, 王继平, 王龙, 等. 古地貌恢复及其对三角洲前缘沉积砂体的控制作用——以鄂尔多斯盆地庆阳气田二叠系山西组13亚段为例[J]. 石油与天然气地质, 2021, 42(5): 1136-1145, 1158. |
LI Jinbu, WANG Jiping, WANG Long, et al. Paleogeomorphologic restoration and its controlling effect on deposition of delta-front sand bodies: A case study of Shan 13 sub-member of the Permian Shanxi Formation, Qingyang gas field, Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1136-1145, 1158. | |
35 | 刘洪洲, 程奇, 宋洪亮, 等. 曹妃甸A油田沙二段缓坡微古地貌对沉积砂体的控制作用[J]. 石油地质与工程, 2021, 35(2): 01-04. |
LIU Hongzhou, CHENG Qi, SONG Hongliang, et al. Control effect of gentle slope micro paleogeomorphology on sedimentary sand body in the second member of Shahejie formation in Caofeidian A oilfield [J]. Petroleum Geology & Engineering, 2021, 35(2): 01-04. | |
36 | 江东辉, 杜学斌, 李昆, 等. 东海西湖凹陷保俶斜坡带平湖组“古地貌—古水系—古坡折”特征及其对沉积体系的控制[J]. 石油实验地质, 2022, 44(5): 771-779. |
JIANG Donghui, DU Xuebin, LI Kun, et al. Distribution of sedimentary system multi-controlled by palaeo-geomorphology, water system and break during the deposition of Pinghu Formation, Baochu slope belt, Xihu Sag, East China Sea Shelf Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 771-779. | |
37 | 廖新武, 谢润成, 周文, 等. 古地貌对渤海湾盆地B区块太古宇暴露型潜山变质岩风化带储层裂缝发育的影响[J]. 石油与天然气地质, 2023, 44(2): 406-417. |
LIAO Xinwu, XIE Runcheng, ZHOU Wen, et al. The effects of paleogeomorphology on the development of fractures in reservoirs of weathering metamorphic zone in an exposed Archean burial hill, Block B, Bohai Bay Basin[J]. Oil & Gas Geology, 2023, 44(2): 406-417. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[8] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[9] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[10] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[11] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
[12] | 张瑞, 金之钧, 朱如凯, 李明松, 惠潇, 魏韧, 贺翔武, 张谦. 中国陆相富有机质页岩沉积速率研究及其页岩油勘探意义[J]. 石油与天然气地质, 2023, 44(4): 829-845. |
[13] | 张天舒, 朱如凯, 蔡毅, 王华建, 吕丹, 周海燕, 付秀丽, 刘畅, 崔坤宁, 张素荣, 王浡, 吴松涛, 张婧雅, 姜晓华, 冯有良, 刘合. 松辽盆地古龙凹陷白垩系青山口组页岩层序等时格架下的有机质分布规律[J]. 石油与天然气地质, 2023, 44(4): 869-886. |
[14] | 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜—大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. |
[15] | 徐长贵, 龚承林. 从层序地层走向源-汇系统的储层预测之路[J]. 石油与天然气地质, 2023, 44(3): 521-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||