石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (2): 457-470.doi: 10.11743/ogg20240211
张赫驿1,2(), 杨帅1,2(), 张玺华3, 彭瀚霖3, 李乾4, 陈聪3, 高兆龙3, 陈安清1,2
收稿日期:
2023-12-07
修回日期:
2024-03-04
出版日期:
2024-04-30
发布日期:
2024-04-30
通讯作者:
杨帅
E-mail:1134202475@qq.com;yangshuai17@cdut.edu.cn
第一作者简介:
张赫驿(1999—),女,硕士研究生,沉积学与地层古生物学。E‑mail: 1134202475@qq.com。
基金项目:
Heyi ZHANG1,2(), Shuai YANG1,2(), Xihua ZHANG3, Hanlin PENG3, Qian LI4, Cong CHEN3, Zhaolong GAO3, Anqing CHEN1,2
Received:
2023-12-07
Revised:
2024-03-04
Online:
2024-04-30
Published:
2024-04-30
Contact:
Shuai YANG
E-mail:1134202475@qq.com;yangshuai17@cdut.edu.cn
摘要:
近年来,川东地区中二叠统茅口组持续发现工业气流,研究该区域茅口组的沉积微相与环境演化对油气勘探具有重要意义。以重庆市武隆区羊角剖面为研究对象,在野外沉积特征观察的基础上,通过岩石薄片鉴定及地球化学分析,研究了沉积微相及该地区茅口组的沉积环境演化特征。研究表明羊角剖面茅口组主要发育5种沉积微相。茅口组下部主要为含生物碎屑泥晶灰岩和泥晶灰岩沉积微相,是水体能量低的较深水环境下的沉积产物。茅口组中部以亮晶生物碎屑灰岩、泥晶生物碎屑灰岩、生物碎屑泥晶灰岩和生物碎屑泥晶灰岩为主,亮晶生物碎屑灰岩的出现表明高能的沉积环境,水体较浅。茅口组上部以泥晶生物碎屑灰岩、生物碎屑泥晶灰岩和含生物碎屑微晶灰岩为主,此时水体再次变深。茅口组下部δ13Ccarb值较低,平均3.00 ‰,中-上部δ13Ccarb值主要在4.00 ‰以上。显示茅口组一段为缺氧环境,随后氧化性增强转换成贫氧环境,茅口组沉积晚期再次回到缺氧环境。川东地区茅口组沉积微相特征及海平面变化受冰期影响,全球海平面下降是沉积环境转变的主控因素,浅水沉积环境是高能颗粒滩发育的有利地质条件,高能滩发育是川东地区茅口组中-上部优质储层形成的主要原因。
中图分类号:
表1
武隆区羊角剖面茅口组实验数据及计算结果"
样品号 | 厚度/m | 碳、氧同位素值/‰ | 微量元素含量/10-6 | 微量元素含量比值 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δ18O | δ13Ccarb | Sr | Ba | Rb | Th | U | V | Ni | Co | Sr/Ba | Rb/Sr | Th/U | V/(V+Ni) | Ni/Co | ||
YJ-B-1 | 367.62 | -4.67 | 3.21 | 1 252.6 | 8.1 | 0.5 | 0.3 | 3.2 | 10.7 | 2.6 | 0.2 | 155.23 | 0.000 4 | 0.08 | 0.80 | 15.74 |
YJ-B-2 | 354.73 | -4.93 | 3.25 | 1 508.9 | 14.8 | 0.6 | 0.2 | 5.0 | 4.5 | 1.3 | 0.1 | 101.96 | 0.000 4 | 0.03 | 0.78 | 13.75 |
YJ-B-3 | 348.83 | -4.28 | 3.40 | 1 882.7 | 10.2 | 1.4 | 0.1 | 6.9 | 7.5 | 1.4 | 0.1 | 184.72 | 0.000 7 | 0.02 | 0.85 | 11.83 |
YJ-B-4 | 341.24 | -4.43 | 3.24 | 1 776.5 | 9.2 | 1.2 | 0.1 | 4.2 | 6.2 | 1.2 | 0.1 | 193.39 | 0.000 7 | 0.02 | 0.83 | 10.23 |
YJ-B-5 | 337.35 | -4.77 | 3.40 | 2 919.3 | 42.0 | 0.6 | 0.1 | 5.8 | 4.0 | 1.0 | 0.1 | 69.53 | 0.000 2 | 0.02 | 0.80 | 11.30 |
YJ-B-6 | 333.41 | -5.44 | 3.48 | 1 637.1 | 7.2 | 0.5 | 0.1 | 5.1 | 4.4 | 0.9 | 0.1 | 228.61 | 0.000 3 | 0.03 | 0.83 | 11.63 |
YJ-B-7 | 328.68 | -5.01 | 3.29 | 2 461.9 | 10.5 | 1.7 | 0.3 | 10.0 | 15.3 | 2.2 | 0.1 | 233.43 | 0.000 7 | 0.03 | 0.87 | 17.80 |
YJ-B-8 | 326.55 | -4.25 | 3.28 | 1 421.5 | 8.1 | 1.2 | 0.1 | 5.3 | 14.5 | 1.7 | 0.1 | 176.28 | 0.000 9 | 0.02 | 0.90 | 12.22 |
YJ-B-9 | 284.53 | -4.86 | 2.32 | 4 182.9 | 15.2 | 2.1 | 0.2 | 2.5 | 25.5 | 8.1 | 0.3 | 274.74 | 0.000 5 | 0.10 | 0.76 | 23.92 |
YJ-B-10 | 272.48 | -4.71 | 3.89 | 1 866.8 | 8.6 | 0.8 | 0.1 | 2.3 | 5.0 | 1.8 | 0.2 | 216.76 | 0.000 4 | 0.04 | 0.73 | 11.48 |
YJ-B-11 | 266.45 | -3.86 | 3.72 | 3 509.5 | 32.6 | 0.9 | 0.2 | 8.8 | 37.9 | 3.0 | 0.2 | 107.63 | 0.000 2 | 0.02 | 0.93 | 20.01 |
YJ-B-12 | 264.34 | -4.77 | 2.83 | 2 687.7 | 13.6 | 1.7 | 0.2 | 3.6 | 25.2 | 3.9 | 0.2 | 197.96 | 0.000 6 | 0.05 | 0.86 | 20.52 |
YJ-B-13 | 253.77 | -4.35 | 3.30 | 1 275.0 | 8.1 | 0.8 | 0.1 | 3.3 | 5.7 | 1.0 | 0.1 | 157.08 | 0.000 6 | 0.04 | 0.86 | 9.97 |
YJ-B-14 | 248.98 | -5.37 | 3.91 | 3 125.6 | 9.2 | 0.4 | 0.1 | 4.9 | 18.5 | 0.8 | 0.1 | 340.74 | 0.000 1 | 0.01 | 0.96 | 10.14 |
YJ-B-15 | 245.74 | -7.02 | 1.93 | 1 057.4 | 10.7 | 0.3 | 0.0 | 9.4 | 5.6 | 0.8 | 0.1 | 99.14 | 0.000 3 | 0.00 | 0.88 | 8.87 |
YJ-B-16 | 226.3 | -5.73 | 3.43 | 2 332.2 | 15.7 | 2.8 | 0.2 | 4.4 | 97.7 | 13.9 | 0.2 | 148.50 | 0.001 2 | 0.04 | 0.88 | 62.76 |
YJ-B-17 | 202.95 | -5.74 | 3.66 | 2 797.5 | 8.4 | 0.8 | 0.1 | 14.6 | 26.2 | 2.2 | 0.1 | 332.12 | 0.000 3 | 0.01 | 0.92 | 17.39 |
YJ-B-18 | 200.36 | -4.46 | 3.71 | 5 233.7 | 8.4 | 0.8 | 0.1 | 2.8 | 24.3 | 2.0 | 0.2 | 619.44 | 0.000 1 | 0.04 | 0.92 | 12.37 |
YJ-B-19 | 193.8 | -4.59 | 3.95 | 1 446.2 | 12.1 | 4.1 | 0.5 | 12.8 | 52.2 | 13.1 | 0.6 | 119.35 | 0.002 8 | 0.04 | 0.80 | 23.25 |
YJ-B-20 | 187.95 | -4.88 | 3.72 | 1 570.0 | 11.0 | 3.3 | 0.2 | 7.9 | 73.3 | 5.6 | 0.2 | 142.33 | 0.002 1 | 0.03 | 0.93 | 25.75 |
YJ-B-21 | 171.32 | -4.84 | 3.94 | 1 868.0 | 9.0 | 1.1 | 0.4 | 6.1 | 12.3 | 1.6 | 0.2 | 206.43 | 0.000 6 | 0.07 | 0.88 | 8.37 |
YJ-B-22 | 166.15 | -7.10 | 4.38 | 2 835.7 | 8.7 | 0.9 | 0.2 | 1.9 | 12.6 | 2.3 | 0.2 | 326.65 | 0.000 3 | 0.11 | 0.84 | 12.75 |
YJ-B-23 | 151.9 | -5.47 | 4.85 | 1 109.7 | 6.6 | 0.7 | 0.2 | 2.3 | 26.2 | 2.4 | 0.1 | 169.42 | 0.000 7 | 0.09 | 0.92 | 17.84 |
YJ-B-24 | 124.08 | -5.91 | 4.86 | 834.2 | 6.3 | 0.9 | 0.3 | 3.2 | 13.7 | 4.0 | 0.2 | 132.14 | 0.001 0 | 0.09 | 0.77 | 26.43 |
YJ-B-25 | 110.85 | -5.06 | 4.29 | 567.9 | 8.0 | 1.9 | 0.3 | 3.3 | 9.0 | 4.4 | 0.3 | 71.06 | 0.003 3 | 0.08 | 0.67 | 17.62 |
YJ-B-26 | 104.89 | -6.64 | 2.97 | 879.1 | 10.7 | 2.0 | 0.3 | 1.8 | 5.9 | 9.4 | 0.5 | 82.33 | 0.002 3 | 0.19 | 0.39 | 19.28 |
YJ-B-27 | 97.08 | -6.46 | 4.26 | 156.0 | 5.9 | 0.8 | 0.3 | 1.7 | 6.0 | 6.6 | 0.2 | 26.22 | 0.005 0 | 0.18 | 0.48 | 41.58 |
YJ-B-28 | 86.91 | -5.65 | 4.07 | 976.3 | 7.9 | 1.4 | 0.9 | 5.3 | 43.2 | 9.4 | 0.2 | 123.37 | 0.001 4 | 0.16 | 0.82 | 51.46 |
YJ-B-29 | 71.77 | -6.92 | 3.99 | 1 015.5 | 15.1 | 4.4 | 0.9 | 7.3 | 119.6 | 37.2 | 0.4 | 67.08 | 0.004 3 | 0.12 | 0.76 | 97.76 |
YJ-B-30 | 65.55 | -8.24 | 3.79 | 1 512.6 | 9.2 | 0.5 | 1.2 | 3.0 | 31.5 | 7.4 | 0.1 | 163.86 | 0.000 3 | 0.38 | 0.81 | 57.66 |
YJ-B-31 | 61.3 | -6.55 | 4.26 | 2 150.5 | 13.1 | 0.5 | 0.2 | 3.1 | 32.5 | 3.4 | 0.1 | 164.51 | 0.000 2 | 0.08 | 0.90 | 36.13 |
YJ-B-32 | 52.79 | -6.99 | 4.06 | 1 545.1 | 13.8 | 3.7 | 1.5 | 7.5 | 104.3 | 9.1 | 0.5 | 111.99 | 0.002 4 | 0.19 | 0.92 | 18.13 |
YJ-B-33 | 39.63 | -5.24 | 4.43 | 2 315.1 | 13.2 | 3.1 | 1.0 | 4.6 | 144.1 | 6.7 | 0.5 | 175.42 | 0.001 4 | 0.21 | 0.96 | 14.45 |
YJ-B-34 | 32.36 | -5.01 | 4.67 | 1 243.0 | 8.4 | 2.3 | 0.8 | 8.4 | 68.3 | 6.2 | 0.3 | 148.17 | 0.001 9 | 0.10 | 0.92 | 23.94 |
YJ-B-35 | 23.09 | -5.79 | 4.55 | 1 851.3 | 6.1 | 1.4 | 0.4 | 3.9 | 19.7 | 3.7 | 0.2 | 301.27 | 0.000 8 | 0.10 | 0.84 | 21.52 |
YJ-B-36 | 11.34 | -4.85 | 3.59 | 1 534.9 | 8.2 | 0.8 | 0.2 | 8.0 | 9.5 | 9.4 | 0.2 | 186.39 | 0.000 5 | 0.02 | 0.50 | 47.61 |
1 | CHEN Z Q, GEORGE A D, YANG W R, et al. Effects of Middle-Late Permian sea-level changes and mass extinction on the formation of the Tieqiao skeletal mound in the Laibin area, South China[J]. Australian Journal of Earth Sciences, 2009, 56(6): 745-763. |
2 | HAQ B U, SCHUTTER S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68. |
3 | QIU Zhen, WANG Qingchen, ZOU Caineng, et al. Transgressive-regressive sequences on the slope of an isolated carbonate platform (Middle-Late Permian, Laibin, South China)[J]. Facies, 2014, 60(1): 327-345. |
4 | 杨雨, 谢继容, 赵路子, 等. 四川盆地茅口组滩相孔隙型白云岩储层天然气勘探的突破及启示——以川中北部地区JT1井天然气立体勘探为例[J]. 天然气工业, 2021, 41(2): 1-9. |
YANG Yu, XIE Jirong, ZHAO Luzi, et al. Breakthrough of natural gas exploration in the beach facies porous dolomite reservoir of Middle Permian Maokou Formation in the Sichuan Basin and its enlightenment: A case study of the tridimensional exploration of Well JT1 in the central-northern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(2): 1-9. | |
5 | 刘宣威, 田亚铭, 张慧, 等. 川北地区中二叠统茅二段储层特征及控制因素分析[J]. 断块油气田, 2022, 29(4): 463-468. |
LIU Xuanwei, TIAN Yaming, ZHANG Hui, et al. Reservoir characteristics and its controlling factor of the second member of the Middle Permian Maokou Formation in northern Sichuan region[J]. Fault-Block Oil and Gas Field, 2022, 29(4): 463-468. | |
6 | 胡昊, 许国明, 高峰, 等. 四川盆地西部茅口组多类型储集层成因与启示[J]. 新疆石油地质, 2016, 37(5): 512-518. |
HU Hao, XU Guoming, GAO Feng, et al. Maokou multi-type reservoirs in western Sichuan basin: Genesis and implications[J]. Xinjiang Petroleum Geology, 2016, 37(5): 512-518. | |
7 | 肖钦仁, 袁海锋, 叶子旭, 等. 川中北部地区八角场构造二叠系茅口组白云岩储层成因机制[J]. 天然气地球科学, 2023, 34(7): 1218-1236. |
XIAO Qinren, YUAN Haifeng, YE Zixu, et al. Genetic mechanism of dolomite reservoir in Permian Maokou Formation in Bajiaochang structure in North Central Sichuan[J]. Natural Gas Geoscience, 2023, 34(7): 1218-1236. | |
8 | 张宇, 曹清古, 罗开平, 等. 四川盆地二叠系茅口组油气藏勘探发现与启示[J].石油与天然气地质, 2022, 43(3): 610-620. |
ZHANG Yu, CAO Qinggu, LUO Kaiping, et al. Reservoir exploration of the Permian Maokou Formation in the Sichuan Basin and enlightenment obtained[J]. Oil & Gas Geology, 2022, 43(3): 610-620. | |
9 | 范建平, 宋金民, 江青春, 等. 川东地区中二叠统茅口组一段储层特征与形成模式[J]. 石油与天然气地质, 2022, 43(6): 1413-1430. |
FAN Jianping, SONG jinmin, JIANG Qingchun, et al. Reservoir characteristics and development model of the Middle Permian Mao-1 Member in eastern Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(6): 1413-1430. | |
10 | 刘昇,范存辉,张本健,等.四川盆地东部中二叠统茅口组孤峰段展布特征及其油气地质意义[J].石油与天然气地质,2023,44(4):993-1008. |
LIU Sheng, FAN Cunhui, ZHANG Benjian, et al.Distribution characteristics of Gufeng Member of the Middle Permian Maokou Formation, eastern Sichuan Basin and its petrogeological significance[J].Oil & Gas Geology,2023,44(4):993-1008. | |
11 | 冯增昭, 杨玉卿, 金振奎, 等. 中国南方二叠纪岩相古地理[J]. 沉积学报, 1996, 14(2): 1-11. |
FENG Zengzhao, YANG Yuqing, JIN Zhenkui, et al. Permian lithofacies paleogeography of southern China[J]. Acta Sedimentologica Sinica, 1996, 14(2): 1-11. | |
12 | 韩月卿, 李双建, 韩文彪, 等. 川东南地区中二叠统茅口组灰泥灰岩储层孔隙特征[J]. 石油实验地质, 2022, 44(4): 666-676. |
HAN Yueqing, LI Shuangjian, HAN Wenbiao, et al. Pore characteristics of marl reservoir in Maokou Formation of Middle Permian,southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 666-676. | |
13 | 姜智利, 朱祥. 四川盆地元坝地区二叠系茅口组油气成藏特征及主控因素[J]. 石油实验地质, 2022, 44(4): 639-646. |
JIANG Zhili, ZHU Xiang. Hydrocarbon accumulation characteristics and main controlling factors for Permian Maokou Formation in Yuanba area,Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 639-646. | |
14 | 山克强, 孟晓荣. 云南镇雄二叠系栖霞组—茅口组沉积微相及沉积环境演变[J]. 地层学杂志, 2022, 46(1): 68-85. |
SHAN Keqiang, MENG Xiaorong. Carbonate microfacies analysis and evolution of depositional environment of the Chihsia Formation and the Maokou Formation (Middle Permian) in Zhenxiong, Yunnan[J]. Journal of Stratigraphy, 2022, 46(1): 68-85. | |
15 | 王秀平, 王启宇, 安显银. 川南地区二叠系沉积环境及其演化特征——以四川古蔺芭蕉村剖面为例[J]. 沉积与特提斯地质, 2022, 42(3): 398-412. |
WANG Xiuping, WANG Qiyu, AN Xianyin. Characteristics of sedimentary environment and evolution of Permian in southern Sichuan Basin: An example from the profile of Gulin Bajiaocun in Sichuan Province[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(3): 398-412. | |
16 | 杨虎城, 林良彪, 余瑜, 等. 川西南天全地区中二叠统碳酸盐岩地球化学特征及其古环境意义[J]. 矿物岩石, 2022, 42(2): 47-59. |
YANG Hucheng, LIN Liangbiao, YU Yu, et al. Geochemical characteristics and paleo-environmental significance of Middle Permian carbonate rocks in Tianquan area, southwestern Sichuan Province, China[J]. Mineralogy and Petrology, 2022, 42(2): 47-59. | |
17 | 李乾, 徐胜林, 陈洪德, 等. 川北旺苍地区茅口组地球化学特征及古环境记录[J]. 成都理工大学学报(自然科学版), 2018, 45(3): 268-281. |
LI Qian, XU Shenglin, CHEN Hongde, et al. Geochemical characteristics and palaeo-environmental implication of Middle Permian Maokou Formation in Wangcang region, Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2018, 45(3): 268-281. | |
18 | 李蓉, 苏成鹏, 石国山, 等. 川南地区二叠系茅口组一段瘤状灰岩储层成因[J]. 天然气地球科学, 2021, 32(6): 806-815. |
LI Rong, SU Chengpeng, SHI Guoshan, et al. The genesis of nodular limestone reservoirs of the first period of Maokou Formation of Permian in southern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(6): 806-815. | |
19 | 余瑜, 林良彪, 任天龙, 等. 川东南茅口组硅质岩地球化学特征及沉积背景[J]. 成都理工大学学报(自然科学版), 2016, 43(5): 564-573. |
YU Yu, LIN Liangbiao, REN Tianlong, et al. Geochemical characteristics of silicalites from the Middle Permian Maokou Formation and research of its formation environment in Southeast Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2016, 43(5): 564-573. | |
20 | 苏成鹏. 川东地区茅口组眼球状石灰岩成因机制及地质意义[D]. 成都: 西南石油大学, 2017. |
SU Chengpeng. Genetic mechanism and geological significance of the oculus limestone of Maokou Formation in eastern Sichuan[D]. Chengdu: Southwest Petroleum University, 2017. | |
21 | 杨帅, 陈安清, 张玺华, 等. 四川盆地二叠纪栖霞—茅口期古地理格局转换及勘探启示[J]. 沉积学报, 2021, 39(6): 1466-1477. |
YANG Shuai, CHEN Anqing, ZHANG Xihua, et al. Paleogeographic transition of the Permian Chihsia-Maokou period in the Sichuan Basin and indications for oil-gas exploration[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1466-1477. | |
22 | 沈树忠, 张华, 张以春, 等. 中国二叠纪综合地层和时间框架[J]. 中国科学(地球科学), 2019, 49(1): 160-193. |
SHEN Shuzhong, ZHANG Hua, ZHANG Yichun, et al. Permian integrative stratigraphy and timescale of China[J]. Scientia Sinica(Terrae), 2019, 49(1): 160-193. | |
23 | YAO Xu, ZHOU Yaoqi, HINNOV L A. Astronomical forcing of a Middle Permian chert sequence in Chaohu, South China[J]. Earth and Planetary Science Letters, 2015, 422: 206-221. |
24 | 冯增昭, 何幼斌, 吴胜和. 中下扬子地区二叠纪岩相古地理[J]. 沉积学报, 1993, 11(3): 13-24. |
FENG Zengzhao, HE Youbin, WU Shenghe. Listhofacies paleogeography of Permian Middle and Lower Yangtze region[J]. Acta Sedimentologica Sinica, 1993, 11(3): 13-24. | |
25 | 曾允孚, 夏文杰. 沉积岩石学[M]. 北京: 地质出版社, 1986. |
ZENG Yunfu, XIA Wenjie. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1986. | |
26 | FOLK R L. Spectral subdivision of limestone types[M]//HAM W E. Classification of Carbonate Rocks—A Symposium. Tulsa: American Association of Petroleum Geologists, 1962: 62-84. |
27 | DUNHAM R J. Classification of carbonate rocks according to depositional texture[M]//HAM W E. Classification of Carbonate Rocks—A Symposium. Tulsa: American Association of Petroleum Geologists, 1962: 108-121. |
28 | VEIZER J. Chemical diagenesis of carbonates: theory and application of trace element technique[M]//ARTHUR M A, ANDERSON T F, KAPLAN I R, et al. Stable Isotopes in Sedimentary Geology. Broken Arrow: SEPM Society for Sedimentary Geology, 1983: 3-1-3-100. |
29 | DERRY L A, KAUFMAN A J, JACOBSEN S B. Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1317-1329. |
30 | KUMP L R, ARTHUR M A. Interpreting carbon-isotope excursions: Carbonates and organic matter[J]. Chemical Geology, 1999, 161(1/3): 181-198. |
31 | KAUFMAN A J, KNOLL A H. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/4): 27-49. |
32 | WIGNALL P B. Black shales[M]. New York: Oxford University Press, 1994: 127. |
33 | WIGNALL P B, TWITCHETT R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5265): 1155-1158. |
34 | JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129. |
35 | TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. |
36 | SCHOEPFER S D, SHEN Jun, WEI Hengye, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews, 2015, 149: 23-52. |
37 | 许中杰, 程日辉, 张莉, 等. 华南陆缘晚三叠—早、中侏罗世海平面相对升降与古气候演化的地球化学记录[J]. 地球科学(中国地质大学学报), 2012, 37(1): 113-124. |
XU Zhongjie, CHENG Rihui, ZHANG Li, et al. The geochemistry records of sea-level relative movement and paleoclimatic evolution of the South China continental margin in Late Triassic-Early-Middle Jurassic[J]. Earth Science-Journal of China University of Geosciences, 2012, 37(1): 113-124. | |
38 | SUN Shi, CHEN Anqing, HOU Mingcai, et al. Rapid climatic fluctuations during the Guadalupian-Lopingian transition: Implications from weathering indices recorded in acid-insoluble residues of carbonate rocks, South China[J]. Journal of Asian Earth Sciences, 2022, 230: 105222. |
39 | METCALFE I, CROWLEY J L, NICOLL R S, et al. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana[J]. Gondwana Research, 2015, 28(1): 61-81. |
40 | SHI Zejin, LI Wenjie, LUO Qichao, et al. Emeishan mantle plume activity and carbon isotope responses in the Middle Permian, South China[J]. Journal of Asian Earth Sciences, 2020, 189: 104145. |
41 | ISOZAKI Y, KAWAHATA H, MINOSHIMA K. The Capitanian (Permian) Kamura cooling event: The beginning of the Paleozoic-Mesozoic transition[J]. Palaeoworld, 2007, 16(1/3): 16-30. |
42 | ISOZAKI Y, ALJINOVIĆ D, KAWAHATA H. The Guadalupian (Permian) Kamura event in European Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 12-21. |
43 | KORTE C, JASPER T, KOZUR H W, et al. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 224(4): 333-351. |
44 | LAYA J C, TUCKER M E, GRÖCKE D R, et al. Carbon, oxygen and strontium isotopic composition of low-latitude Permian carbonates (Venezuelan Andes): Climate proxies of tropical Pangea[J]. Geological Society, London, Special Publications, 2013, 376(1): 367-385. |
45 | BOND D P G, WIGNALL P B, WANG W, et al. The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1/2): 282-294. |
46 | CAO Changqun, CUI Can, CHEN Jun, et al. A positive C-isotope excursion induced by sea-level fall in the middle Capitanian of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 305-316. |
47 | LUO Genming, HUANG Junhua, BAI Xiao, et al. Absence of Middle Permian Kamura event in the Paleo-Tethys Ocean[J]. Journal of Earth Science, 2010, 21(1): 86-89. |
48 | JOST A B, MUNDIL R, HE Bin, et al. Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes[J]. Earth and Planetary Science Letters, 2014, 396: 201-212. |
49 | VEIZER J, ALA D, AZMY K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/3): 59-88. |
50 | LI Qian, AZMY K, YANG Shuai, et al. Early-Middle Permian strontium isotope stratigraphy of marine carbonates from the northern marginal areas of South China: Controlling factors and implications[J]. Geological Journal, 2021, 56(3): 1658-1672. |
51 | AZMY K, STOUGE S, BRAND U, et al. High-resolution chemostratigraphy of the Cambrian-Ordovician GSSP: Enhanced global correlation tool[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 409: 135-144. |
52 | JARVIS I, MABROUK A, MOODY R T J, et al. Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 188(3/4): 215-248. |
[1] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[2] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[3] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[4] | 翟常博, 林良彪, 尤东华, 刘冯斌, 刘思雨. 川西南地区中二叠统茅口组一段沉积微相特征及有机质富集模式[J]. 石油与天然气地质, 2024, 45(2): 440-456. |
[5] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[6] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[7] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[8] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[9] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[10] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[11] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[12] | 李双建, 李智, 张磊, 李英强, 孟宪武, 王海军. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
[13] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[14] | 张天舒, 朱如凯, 蔡毅, 王华建, 吕丹, 周海燕, 付秀丽, 刘畅, 崔坤宁, 张素荣, 王浡, 吴松涛, 张婧雅, 姜晓华, 冯有良, 刘合. 松辽盆地古龙凹陷白垩系青山口组页岩层序等时格架下的有机质分布规律[J]. 石油与天然气地质, 2023, 44(4): 869-886. |
[15] | 刘昇, 范存辉, 张本健, 张亚, 王尉, 罗冰, 白晓亮. 四川盆地东部中二叠统茅口组孤峰段展布特征及其油气地质意义[J]. 石油与天然气地质, 2023, 44(4): 993-1008. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||