石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (5): 1368-1382.doi: 10.11743/ogg20240512
冯潇飞1,2(), 赵晓明1,2(), 张喜1,2, 葛家旺1,2, 杨长城3, 梁岳立1,2, Bouchakour Massine1,2
收稿日期:
2024-04-12
修回日期:
2024-09-02
出版日期:
2024-10-30
发布日期:
2024-11-06
通讯作者:
赵晓明
E-mail:fxf0916@163.com;zhxim98@163.com
第一作者简介:
冯潇飞(1993—),男,博士研究生,油气开发地质。E-mail:fxf0916@163.com
基金项目:
Xiaofei FENG1,2(), Xiaoming ZHAO1,2(), Xi ZHANG1,2, Jiawang GE1,2, Changcheng YANG3, Yueli LIANG1,2, Massine Bouchakour1,2
Received:
2024-04-12
Revised:
2024-09-02
Online:
2024-10-30
Published:
2024-11-06
Contact:
Xiaoming ZHAO
E-mail:fxf0916@163.com;zhxim98@163.com
摘要:
陆相湖盆的湖平面升降导致的盆内沉积充填差异对油气形成与富集具有重要影响,而湖平面波动受气候作用影响明显。选取川中地区中侏罗世早期沙溪庙组一段的湖相连续沉积记录,采用高分辨率自然伽马测井资料作为气候替代指标,开展了中侏罗世早期陆相地层的旋回地层学研究,对长、短偏心率周期进行滤波分析,建立了沙溪庙组一段的浮动天文年代标尺。研究发现:① 沙溪庙组一段陆相湖盆沉积地层中保存了完好的天文旋回响应信号;② 通过川中地区沙溪庙组一段的天文年代标尺计算,认为沙溪庙组一段沉积持续时间约为2.43 Ma;③ 偏心率接近极大值且岁差振幅较大表明气候温暖、潮湿,湖平面相对上升,发育偏泥质沉积,偏心率接近极小值且岁差振幅较小表明气候寒冷、干旱,发育偏砂质沉积,砂质沉积物厚度差异受岁差振幅所调控;④ 中侏罗世早期不同尺度的轨道周期驱动力共同控制了气候的变化,气候变化引起湖平面的波动,湖平面的波动影响了沉积物的分布。
中图分类号:
1 | SUN Longde, ZOU Caineng, JIA Ailin, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1073-1087. |
2 | 肖富森, 韦腾强, 王小娟, 等. 四川盆地川中—川西地区沙溪庙组层序地层特征[J]. 天然气地球科学, 2020, 31(9): 1216-1224. |
XIAO Fusen, WEI Tengqiang, WANG Xiaojuan, et al. Research on the sequence stratigraphy of the Shaximiao Formation in Chuanzhong-Chuanxi area, Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(9): 1216-1224. | |
3 | 朱红涛, 徐长贵, 杜晓峰, 等. 陆相盆地古源-汇系统定量重建、级次划分及耦合模式[J]. 石油与天然气地质, 2023, 44(3): 539-552. |
ZHU Hongtao, XU Changgui, DU Xiaofeng, et al. Quantitative reconstruction, hierarchical division and coupling mode establishment for ancient source-to-sink systems in continental basins[J]. Oil & Gas Geology, 2023, 44(3): 539-552. | |
4 | HU Yong, XIAO Juan, HE Wenxiang, et al. Application of high frequency lake level change in the prediction of tight sandstone thin reservoir by sedimentary simulation[J]. Marine and Petroleum Geology, 2021, 128: 105049. |
5 | HUANG Chunju. Chapter two-astronomical time scale for the Mesozoic[J]. Stratigraphy & Timescales, 2018, 3: 81-150. |
6 | 杨跃明, 王小娟, 陈双玲, 等. 四川盆地中部地区侏罗系沙溪庙组沉积体系演化及砂体发育特征[J]. 天然气工业, 2022, 42(1): 12-24. |
YANG Yueming, WANG Xiaojuan, CHEN Shuangling, et al. Sedimentary system evolution and sandbody development characteristics of Jurassic Shaximiao Formation in the central Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 12-24. | |
7 | YANG Tian, LI Xiaofeng, YANG Yu, et al. Evolution from shallow-water deltas to fluvial fans in lacustrine basins: A case study from the Middle Jurassic Shaximiao Formation in the central Sichuan Basin, China[J]. Sedimentology, 2024, 71(3): 1023-1055. |
8 | WANG Jun, YE Yong, PEI Rui, et al. Age of Jurassic basal sauropods in Sichuan, China: A reappraisal of basal sauropod evolution[J]. GSA Bulletin, 2018, 130(9/10): 1493-1500. |
9 | ZHOU Yuxuan, DAI Hui, YU Haidong, et al. Zircon geochronology of the new dinosaur fauna in the Middle Jurassic lower Shaximiao Formation in Chongqing, SW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 592: 110894. |
10 | SCOTESE C R, SCHETTINO A. Chapter 3-Late Permian-Early Jurassic paleogeography of western Tethys and the world[M]//SOTO J I, FLINCH J F, TARI G. Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Amsterdam: Elsevier, 2017: 57-95. |
11 | 杨雨, 谢继容, 曹正林, 等. 四川盆地天府气田沙溪庙组大型致密砂岩气藏形成条件及勘探开发关键技术[J]. 石油学报, 2023, 44(6): 917-932. |
YANG Yu, XIE Jirong, CAO Zhenglin, et al. Forming conditions and key technologies for exploration and development of large tight sandstone gas reservoirs in Shaximiao Formation, Tianfu gas field of Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(6): 917-932. | |
12 | XU Changhai, ZHOU Zuyi, CHANG Yuan, et al. Genesis of Daba arcuate structural belt related to adjacent basement upheavals: Constraints from Fission-track and (U-Th)/He thermochronology[J]. Science China Earth Sciences, 2010, 53(11): 1634-1646. |
13 | QIU Ruoyuan, FANG Linhao, LU Yuanzheng, et al. Cyclostratigraphy of the Lower Jurassic (Toarcian) terrestrial successions in the Sichuan Basin, southwestern China[J]. Journal of Asian Earth Sciences, 2023, 250: 105617. |
14 | 刘洋, 吴怀春, 张世红, 等. 珠江口盆地珠-坳陷韩江组-万山组旋回地层学[J]. 地球科学(中国地质大学学报), 2012, 37(3): 411-423. |
LIU Yang, WU Huaichun, ZHANG Shihong. Cyclostratigraphy research on the Hanjiang-Wanshan Formations in Zhuyi Depression, Pearl River Mouth Basin[J]. Earth Science-Journal of China University of Geosciences, 2012, 37(3): 411-423. | |
15 | LI Mingsong, HINNOV L, KUMP L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22. |
16 | WU Huaichun, ZHANG Shihong, JIANG Ganqing, et al. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications[J]. Earth and Planetary Science Letters, 2009, 278(3/4): 308-323. |
17 | WU Huaichun, ZHANG Shihong, HINNOV L A, et al. Time-calibrated Milankovitch cycles for the late Permian[J]. Nature Communications, 2013, 4: 2452. |
18 | WANG Meng, CHEN Honghan, HUANG Chunju, et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China[J]. Earth and Planetary Science Letters, 2020, 535: 116116. |
19 | HUANG Chunju, OGG J G, KEMP D B, et al. Cyclostratigraphy and astrochronology: Case studies from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110017. |
20 | VAN VUGT N, LANGEREIS C G, HILGEN F J. Orbital forcing in Pliocene-Pleistocene Mediterranean lacustrine deposits: Dominant expression of eccentricity versus precession[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 172(3/4): 193-205. |
21 | LI Mingsong, HINNOV L A, HUANG Chunju, et al. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J]. Nature Communications, 2018, 9(1): 1004. |
22 | MEYERS S R. Cyclostratigraphy and the problem of astrochronologic testing[J]. Earth-Science Reviews, 2019, 190: 190-223. |
23 | KODAMA K P, ANASTASIO D J, NEWTON M L, et al. High-resolution rock magnetic cyclostratigraphy in an Eocene flysch, Spanish Pyrenees[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(6): Q0AA07. |
24 | DJIN NIO S, BROUWER J H, SMITH D, et al. Spectral trend attribute analysis: applications in the stratigraphic analysis of wireline logs[J]. First Break, 2005, 23(4): 71-75. |
25 | 夏辉, 王龙, 张道锋, 等. 鄂尔多斯盆地庆阳气田二叠系山西组1段层序结构与沉积演化及其控制因素[J]. 石油与天然气地质, 2022, 43(6): 1397-1412. |
XIA Hui, WANG Long, ZHANG Daofeng, et al. Sequence architecture, sedimentary evolution and controlling factors of the Permian Shan-1 Member,Qingyang gas field, southwestern Ordos Basin[J]. Oil & Gas Geology, 2022, 43(6): 1397-1412. | |
26 | 刘洛夫, 徐敬领, 高鹏, 等. 综合预测误差滤波分析方法在地层划分及等时对比中的应用[J]. 石油与天然气地质, 2013, 34(4): 564-572. |
LIU Luofu, XU Jingling, GAO Peng, et al. Application of comprehensive prediction error filter analysis to stratigraphic division and isochronous correlation[J]. Oil & Gas Geology, 2013, 34(4): 564-572. | |
27 | 梁岳立, 赵晓明, 张喜, 等. 轨道周期约束下海-陆过渡相页岩层系高精度层序界面识别及其地质意义[J]. 石油与天然气地质, 2023, 44(5): 1231-1242. |
LIANG Yueli, ZHAO Xiaoming, ZHANG Xi, et al. Orbital forced high-resolution sequence boundary identification of marine-continental transitional shale and its geological significance: A case in Shan 23 sub-member at the eastern margin of Ordos Basin[J]. Oil & Gas Geology, 2023, 44(5): 1231-1242. | |
28 | 宋翠玉, 吕大炜. 米兰科维奇旋回时间序列分析法研究进展[J]. 沉积学报, 2022, 40(2): 380-395. |
SONG Cuiyu, Dawei LYU. Advances in time series analysis methods for Milankovitch Cycles[J]. Acta Sedimentologica Sinica, 2022, 40(2): 380-395. | |
29 | PRICE G D. The evidence and implications of polar ice during the Mesozoic[J]. Earth-Science Reviews, 1999, 48(3): 183-210. |
30 | MARTINEZ M, DERA G. Orbital pacing of carbon fluxes by a ~9-My eccentricity cycle during the Mesozoic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(41): 12604-12609. |
31 | IKEDA M, BÔLE M, BAUMGARTNER P O, et al. Orbital-scale changes in redox condition and biogenic silica/detrital fluxes of the Middle Jurassic Radiolarite in Tethys (Sogno, Lombardy, N-Italy): Possible link with glaciation?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 457: 247-257. |
32 | NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. |
33 | FEDO C M, YOUNG G M, NESBITT H W. Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: A greenhouse to icehouse transition[J]. Precambrian Research, 1997, 86(3/4): 201-223. |
34 | DAI Xianduo, DU Yuansheng, ZIEGLER M, et al. Middle Triassic to Late Jurassic climate change on the northern margin of the South China plate: Insights from chemical weathering indices and clay mineralogy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 585: 110744. |
35 | 陈晓慧, 曾建理, 张廷山, 等. 川东北地区中侏罗世新田沟期古气候波动的地球化学响应[J]. 地质学报, 2019, 93(12): 3223-3238. |
CHEN Xiaohui, ZENG Jianli, ZHANG Tingshan, et al. Geochemical response to paleoclimate fluctuation during Xintiangou Period (Middle Jurassic), Northeastern Sichuan[J]. Acta Geologica Sinica, 2019, 93(12): 3223-3238. | |
36 | CARROLL A R, BOHACS K M. Lake-type controls on petroleum source rock potential in nonmarine basins[J]. AAPG Bulletin, 2001, 85(6): 1033-1053. |
37 | 彭军, 于乐丹, 许天宇, 等. 天文地层学研究程序及其在渤海湾盆地东营凹陷的应用实例分析[J]. 石油与天然气地质, 2022, 43(6): 1292-1308. |
PENG Jun, YU Ledan, XU Tianyu, et al. Research procedure of astrostratigraphy and case study of Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(6): 1292-1308. | |
38 | BOULILA S, HAQ B U, HARA N, et al. Potential encoding of coupling between Milankovitch forcing and Earth’s interior processes in the Phanerozoic eustatic sea-level record[J]. Earth-Science Reviews, 2021, 220: 103727. |
39 | HAQ B U. Jurassic sea-level variations: A reappraisal[J]. GSA Today, 2018, 28(1): 4-10. |
40 | MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298. |
41 | HAYS J D, IMBRIE J, SHACKLETON N J, et al. Variations in the earth’s orbit: Pacemaker of the ice ages: For 500,000 years, major climatic changes have followed variations in obliquity and precession[J]. Science, 1976, 194(4270): 1121-1132. |
42 | WANG Pinxian, WANG Bin, CHENG Hai, et al. The global monsoon across time scales: Mechanisms and outstanding issues[J]. Earth-Science Reviews, 2017, 174: 84-121. |
43 | OLSEN P E, KENT D V. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 122(1/4): 1-26. |
44 | ZHANG Xi, ZHAO Xiaoming, GE Jiawang, et al. Karst topography paces the deposition of Lower Permian, organic-rich, marine-continental transitional shales in the southeastern Ordos Basin, northwestern China[J]. AAPG Bulletin, 2024, 108(5):849-875. |
45 | SUN Jimin, HUANG Xiaogang. Half-precessional cycles recorded in Chinese loess: Response to low-latitude insolation forcing during the Last Interglaciation[J]. Quaternary Science Reviews, 2006, 25(9/10): 1065-1072. |
46 | VOLLMER T, WERNER R, WEBER M, et al. Orbital control on Upper Triassic playa cycles of the Steinmergel-Keuper (Norian): A new concept for ancient playa cycles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 267(1/2): 1-16. |
47 | WU Wei, ZHANG Lin, QIU Yibo, et al. Milankovitch cycle of continental deep-water fine-grained sedimentary rocks in the lower submember of Es3 of Well FY1 in Dongying Sag and its significance for shale oil exploration[J]. Energy Exploration & Exploitation, 2023, 41(6): 2140-2160. |
48 | HINNOV L A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences[J]. GSA Bulletin, 2013, 125(11/12): 1703-1734. |
49 | RUDDIMAN W F. Orbital changes and climate[J]. Quaternary Science Reviews, 2006, 25(23/24): 3092-3112. |
50 | 刘晓东, 石正国. 岁差对亚洲夏季风气候变化影响研究进展[J]. 科学通报, 2009, 54(20): 3097-3107. |
LIU Xiaodong, SHI Zhengguo. Effect of precession on the Asian summer monsoon evolution: A systematic review[J]. Chinese Science Bulletin, 2009, 54(20): 3097-3107. | |
51 | 孙善勇, 刘惠民, 操应长, 等. 湖相深水细粒沉积岩米兰科维奇旋回及其页岩油勘探意义——以东营凹陷牛页1井沙四上亚段为例[J]. 中国矿业大学学报, 2017, 46(4): 846-858. |
SUN Shanyong, LIU Huimin, CAO Yingchang, et al. Milankovitch cycle of lacustrine deepwater fine-grained sedimentary rocks and its significance to shale oil: A case study of the Upper Es4 member of Well NY1 in Dongying Sag[J]. Journal of China University of Mining & Technology, 2017, 46(4): 846-858. | |
52 | 李猛, 李昕, HESSELBO S P, 等. 冰室-(超)温室气候动荡期湖平面演化及天文轨道气候作用[J]. 中国科学: 地球科学, 2024, 54(1): 264-280. |
LI Meng, LI Xin, HESSELBO S P, et al. Orbital pacing and secular evolution of lake-level changes reconstructed by sedimentary noise modeling during the Early Jurassic icehouses-(super)greenhouses[J]. Science China Earth Sciences, 2024, 54(1): 264-280. | |
53 | FALAHATKHAH O, SERAJAMANI M, KADKHODAIE A, et al. Orbital obliquity evolution during the Late Paleozoic Ice Age across the northeastern Gondwana: Implications for regional sea-level change trigger and reservoir quality assessment[J]. Marine and Petroleum Geology, 2023, 153: 106312. |
54 | 付蕾, 张本健, 曹正林, 等. 四川盆地川中地区侏罗系沙溪庙组不同类型砂体地质特征及地震精细雕刻[J]. 石油实验地质, 2022, 44(1): 85-93. |
FU Lei, ZHANG Benjian, CAO Zhenglin, et al. Geological characteristics and seismic fine description of different types of sand bodies in Jurassic Shaximiao Formation in central Sichuan Basin[J]. Petroleum Geology and Experiment, 2022, 44(1): 85-93. | |
55 | NORDT L, BREECKER D, WHITE J. Jurassic greenhouse ice-sheet fluctuations sensitive to atmospheric CO2 dynamics[J]. Nature Geoscience, 2022, 15(1): 54-59. |
[1] | 彭军, 刘芳兰, 张连进, 郑斌嵩, 唐松, 李顺, 梁新玉. 川中龙女寺地区中二叠统茅口组储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1337-1354. |
[2] | 王威, 刘珠江, 魏富彬, 李飞. 川东北地区二叠系大隆组页岩储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1355-1367. |
[3] | 张琴, 邱振, 赵群, 董大忠, 刘雯, 孔维亮, 庞正炼, 高万里, 蔡光银, 李永洲, 李星涛, 林文姬. 海-陆过渡相与海相页岩气“甜点段”差异特征与形成机理[J]. 石油与天然气地质, 2024, 45(5): 1400-1416. |
[4] | 李一波, 陈耀旺, 赵金洲, 王志强, 魏兵, Valeriy Kadet. 超临界二氧化碳与页岩相互作用机制[J]. 石油与天然气地质, 2024, 45(4): 1180-1194. |
[5] | 朱筱敏, 王晓琳, 张美洲, 林兴悦, 张琴. 中国典型陆相盆地细粒沉积环境和岩相特征[J]. 石油与天然气地质, 2024, 45(4): 873-892. |
[6] | 胡宗全, 刘忠宝, 李倩文, 吴舟凡. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
[7] | 叶玥豪, 陈伟, 汪华, 宋金民, 明盈, 戴鑫, 李智武, 孙豪飞, 马小刚, 刘婷婷, 唐辉, 刘树根. 四川盆地上二叠统大隆组页岩储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 979-991. |
[8] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[9] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[10] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[11] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[12] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[13] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[14] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[15] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||