石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (1): 54-65.doi: 10.11743/ogg20210105
王濡岳1(), 胡宗全1, 董立1, 高波1, 孙川翔1, 杨滔2, 王冠平3, 尹帅4
收稿日期:
2019-01-21
出版日期:
2021-02-28
发布日期:
2021-02-07
第一作者简介:
王濡岳(1990-), 男, 博士、高级工程师, 非常规油气地质和油气勘探规划。E-mail: 基金项目:
Ruyue Wang1(), Zongquan Hu1, Li Dong1, Bo Gao1, Chuanxiang Sun1, Tao Yang2, Guanping Wang3, Shuai Yin4
Received:
2019-01-21
Online:
2021-02-28
Published:
2021-02-07
摘要:
油气勘探理论与技术的进步使非常规油气勘探开发不断取得新的突破。复杂的微-纳米级孔隙体系与特殊的流体赋存方式是页岩有别于常规储层的显著特征,并对储层表征评价内容、方法与技术手段的针对性、准确性和适用性提出了更高要求。在充分调研国内外页岩气储层表征评价技术的基础上,重点介绍了页岩气储层岩相划分与预测、矿物组分、孔隙结构、可压裂性及多尺度/手段联合方法等储层表征评价技术进展。同时,提出未来发展趋势应聚焦于以下几个方面:①精度与针对性的进一步提高;②多技术、多尺度深度融合;③原地/原位条件储层评价;④储层动态监测评价;⑤大数据油气储层评价。最后,针对中国页岩气地质条件与勘探开发现状,提出未来页岩气储层表征技术与研究发展方向应重点聚焦于以下4个方面:①细粒沉积特征;②储层时空演化特征;③可压裂性评价;④储层评价技术的融合、引进与创新。
中图分类号:
1 |
郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21 (3): 24- 37.
doi: 10.3969/j.issn.1672-7703.2016.03.003 |
Guo Xusheng , Hu Dongfeng , Wei Zhihong , et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21 (3): 24- 37.
doi: 10.3969/j.issn.1672-7703.2016.03.003 |
|
2 | 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23 (1): 1- 10. |
Jin Zhijun , Hu Zongquan , Gao Bo , et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formation, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23 (1): 1- 10. | |
3 | 郭彤楼. 涪陵气田发现的启示与思考[J]. 地学前缘, 2016, 23 (1): 29- 43. |
Guo Tonglou . Discovery and characteristics of the Fuling shale gas field and its enlightenment and thinking[J]. Earth Science Frontiers, 2016, 23 (1): 29- 43. | |
4 | 郑和荣, 彭勇民, 唐建信, 等. 中、上扬子地区常压页岩气勘探前景——以湘中坳陷下寒武统为例[J]. 石油与天然气地质, 2019, 40 (6): 1155- 1167. |
Zheng Herong , Peng Yongmin , Tang Jianxin , et al. Exploration prospect of normal pressure shale gas in Middle and Upper Yangtze regions: A case study of the Lower Cambrian shale in Xiangzhong Depression[J]. Oil & Gas Geology, 2019, 40 (6): 1155- 1167. | |
5 | 胡宗全, 杜伟, 彭勇民, 等. 页岩微观孔隙特征及源-储关系——以川东南地区五峰组-龙马溪组为例[J]. 石油与天然气地质, 2015, 36 (6): 1001- 1008. |
Hu Zongquan , Du Wei , Peng Yongmin , et al. Microscopic pore cha-racteristics and the source-reservoir relationship of shale: A case study from the Wufeng and Longmaxi Formations in southeast Sichuan Basin[J]. Oil & Gas Geology, 2015, 36 (6): 1001- 1008. | |
6 | 刘伟新, 鲍芳, 俞凌杰, 等. 川东南志留系龙马溪组页岩储层微孔隙结构及连通性研究[J]. 石油实验地质, 2016, 38 (4): 453- 459. |
Liu Weixin , Bao Fang , Yu Lingjie , et al. Micro-pore structure and connectivity of the Silurian Longmaxi shales, southeastern Sichuan area[J]. Petroleum Geology & Experiment, 2016, 38 (4): 453- 459. | |
7 | 范明, 俞凌杰, 徐二社, 等. 页岩气保存机制探讨[J]. 石油实验地质, 2018, 40 (1): 126- 132. |
Fan Ming , Yu Lingjie , Xu Ershe , et al. Preservation mechanism of Fuling shale gas[J]. Petroleum Geology & Experiment, 2018, 40 (1): 126- 132. | |
8 | 俞凌杰, 范明, 腾格尔, 等. 埋藏条件下页岩气赋存形式研究[J]. 石油实验地质, 2016, 38 (4): 438- 444. |
Yu Lingjie , Fan Ming , Borjigin Tenger , et al. Shale gas occurrence under burial conditions[J]. Petroleum Geology & Experiment, 2016, 38 (4): 438- 444. | |
9 | 王濡岳, 胡宗全, 聂海宽, 等. 川东南五峰组-龙马溪组与黔东南牛蹄塘组页岩储层特征对比分析与差异性探讨[J]. 石油实验地质, 2018, 40 (5): 639- 649. |
Wang Ruyue , Hu Zongquan , Nie Haikuan , et al. Comparative analysis and discussion of shale reservoir characteristics in the Wufeng-Longmaxi and Niutitang formations: a case study of the well JY1 in SE Sichuan Basin and well TX1 in SE Guizhou area[J]. Petroleum Geology & Experiment, 2018, 40 (5): 639- 649. | |
10 | 郑和荣, 高波, 彭勇民, 等. 中上扬子地区下志留统沉积演化与页岩气勘探方向[J]. 古地理学报, 2013, 15 (5): 645- 656. |
Zheng Herong , Gao Bao , Peng Yongmin , et al. Sedimentary evolution and shale gas exploration direction of the Lower Silurian in Middle-Upper Yangtze area[J]. Journal of Pelaeogelgraphy, 2013, 15 (5): 645- 656. | |
11 | 王志峰, 张元福, 梁雪莉, 等. 四川盆地五峰组-龙马溪组不同水动力成因页岩岩相特征[J]. 石油学报, 2014, 35 (4): 623- 632. |
Wang Zhifeng , Zhang Yuanfu , Liang Xueli , et al. Characteristics of shale lithofacies formed under different hydrodynamic conditions in the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2014, 35 (4): 623- 632. | |
12 | 彭勇民, 龙胜祥, 胡宗全, 等. 四川盆地涪陵地区页岩岩石相标定方法与应用[J]. 石油与天然气地质, 2016, 37 (6): 964- 970. |
Peng Yongmin , Long Shengxiang , Hu Zongquan , et al. Calibration method of shale petrological facies and its application in Fuling area, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37 (6): 964- 970. | |
13 | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组页岩岩相类型与沉积环境[J]. 石油学报, 2016, 37 (5): 572- 586. |
Zhao Jianhua , Jin Zhijun , Jin Zhenkui , et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37 (5): 572- 586. | |
14 | 吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组-龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43 (2): 189- 197. |
Wu Lanyu , Hu Dongfeng , Lu Yongchao , et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and development, 2016, 43 (2): 189- 197. | |
15 |
Hu Zongquan , Du Wei , Sun Chuanxiang , et al. Evolution and migration of shale facies and their control on shale gas: A case study from the Wufeng-Longmaxi Formations in the Sichuan Basin and its surroundings[J]. Interpretation, 2018, 6 (4): SN57- SN70.
doi: 10.1190/INT-2018-0015.1 |
16 | Chang H C , Durrans S R , Kopaska-Merkel D C , et al. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system[J]. Computers & Geosciences, 2000, 26 (5): 591- 601. |
17 |
Wang G , Carr T R . Marcellusshale lithofacies prediction by multiclass neural network classification in the Appalachian Basin[J]. Mathematical Geosciences, 2012, 44 (8): 975- 1004.
doi: 10.1007/s11004-012-9421-6 |
18 | 蒋裕强, 宋益滔, 漆麟, 等. 中国海相页岩岩相精细划分及测井预测: 以四川盆地南部威远地区龙马溪组为例[J]. 地学前缘, 2016, 23 (1): 107- 118. |
Jiang Yuqiang , Song Yitao , Qi Lin , et al. Fine lithofacies of China's marine shale and its logging prediction: A case study of the Lower Silurian Longmaxi marine shale in Weiyuan area, southern Sichuan Basin, China[J]. Earth Science Frontiers, 2016, 23 (1): 107- 118. | |
19 |
Wang G , Long S , Ju Y , et al. Application of horizontal wells in three-dimensional shale reservoir modeling: A case study of Longmaxi-Wufeng shale in Fuling gas field, Sichuan Basin[J]. AAPG Bulletin, 2018, 102 (11): 2333- 2354.
doi: 10.1306/05111817144 |
20 | 王民, 关莹, 李传明, 等. 济阳坳陷沙河街组湖相页岩储层孔隙定性描述及全孔径定量评价[J]. 石油与天然气地质, 2018, 39 (6): 1107- 1119. |
Wang Min , Guan Ying , Li Chuanming , et al. Qualitative description and full-pore-size quantitative evaluation of pores in lacustrine shale reservoir of Shahejie Formation, Jiyang Depression[J]. Oil & Gas Geology, 2018, 39 (6): 1107- 1119. | |
21 | 王朋飞, 吕鹏, 姜振学, 等. 中国海陆相页岩有机质孔隙发育特征对比——基于聚焦离子束氦离子显微镜(FIB-HIM)技术[J]. 石油实验地质, 2018, 40 (5): 739- 748. |
Wang Pengfei , Lyu Peng , Jiang Zhenxue , et al. Comparison of organic matter pores of marine and continental facies shale in China: based on Focused Ion Beam Helium Ion Microscopy(FIB-HIM)[J]. Petroleum Geology & Experiment, 2018, 40 (5): 739- 748. | |
22 |
Klaver J , Desbois G , Littke R , et al. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales[J]. Marine and Petrol-eum Geology, 2015, 59, 451- 466.
doi: 10.1016/j.marpetgeo.2014.09.020 |
23 |
Curtis M E , Sondergeld C H , Ambrose R J , et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96 (4): 665- 677.
doi: 10.1306/08151110188 |
24 | Klaver J , Hemes S , Houben M , et al. The connectivity of pore space in mudstones: insights from high-pressure Wood's metal injection, BIB-SEM imaging, and mercury intrusion porosimetry[J]. Geof-luids, 2015, 15 (4): 577- 591. |
25 | Fogden A, Goergen E, Olson T, et al. Applications of multi-scale imaging techniques to unconventional reservoirs[C]//Society of Petroleum Engineers.SPE Asia Pacific Unconventional Resources Confe-rence and Exhibition.Brisbane, Australia: 2015. |
26 | 杨锐. 鄂西渝东地区五峰组-龙马溪组页岩孔隙结构与连通孔隙流体示踪[D]. 武汉: 中国地质大学, 2018. |
Yang Rui.Pore structure and tracer-containing fluid migration in connected pores of Wufeng and Longmaxi shales from western Hubei and eastern Chongqing regions[D]. Wuhan: China Unversity of Geos-ciences, 2018. | |
27 | Klaver J, Schmatz J, Urai J L.Liquid metal injection: a novel tool to investigate connected porosity and transport pathways in unconventional reservoirs[C]//Society of Petroleum Engineers SPE Europec featured at 79th EAGE Conference and Exhibition.Paris, France: 2017. |
28 | 胡钦红, 刘惠民, 黎茂稳, 等. 东营凹陷沙河街组页岩油储集层润湿性、孔隙连通性和流体-示踪剂运移[J]. 石油学报, 2018, 39 (3): 278- 289. |
Hu Qinhong , Liu Huimin , Li Maowen , et al. Wettability, pore connectivity and fluid-tracer migration in shale oil reservoirs of Paleogene Shahejie Formation in Dongying sag of Bohai Bay Basin, east China[J]. Acta Petrolei Sinica, 2018, 39 (3): 278- 289. | |
29 |
刘向君, 熊健, 梁利喜, 等. 川南地区龙马溪组页岩润湿性分析及影响讨论[J]. 天然气地球科学, 2014, 25 (10): 1644- 1652.
doi: 10.11764/j.issn.1672-1926.2014.10.1644 |
Liu Xiangjun , Xiong Jian , Liang Lixi , et al. Analysis of the wettability of Longmaxi Formation shale in the south region of Sichuan Basin and its influence[J]. Natural Gas Geoscience, 2014, 25 (10): 1644- 1652.
doi: 10.11764/j.issn.1672-1926.2014.10.1644 |
|
30 |
Zhou S , Ning Y , Wang H , et al. Investigation of methane adsorption mechanism on Longmaxi shale by combining the micropore filling and monolayer coverage theories[J]. Advances in Geo-Energy Research, 2018, 2 (3): 269- 281.
doi: 10.26804/ager.2018.03.05 |
31 |
Yang R , Jia A , Hu Q , et al. Particle size effect on water vapor sorption measurement of organic shale: One example from Dongyuemiao Member of Lower Jurassic Ziliujing Formation in Jiannan area of China[J]. Advances in Geo-Energy Research, 2020, 4 (2): 207- 218.
doi: 10.26804/ager.2020.02.09 |
32 | 姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 2016, 23 (2): 126- 134. |
Jiang Zhenxue , Tang Xianglu , Li Zhuo , et al. The whole-aperture pore structure characteristics and its effect on gas content ofthe Longmaxi Formation shale in the southeastern Sichuan basin[J]. Earth Science Frontiers, 2016, 23 (2): 126- 134. | |
33 |
Chen L , Jiang Z , Liu K , et al. Quantitative characterization of micropore structure for organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: Implications for shale gas adsorption capacity[J]. Advances in Geo-Energy Research, 2017, 1 (2): 112- 123.
doi: 10.26804/ager.2017.02.07 |
34 | 舒志国, 关红梅, 喻璐, 等. 四川盆地焦石坝地区页岩气储层孔隙参数测井评价方法[J]. 石油实验地质, 2018, 40 (1): 38- 43. |
Shu Zhiguo , Guan Hongmei , Yu Lu , et al. Well logging evaluation of pore parameters for shale gas reservoirs in Jiaoshiba area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40 (1): 38- 43. | |
35 | 李志清, 孙洋, 胡瑞林, 等. 基于核磁共振法的页岩纳米孔隙结构特征研究[J]. 工程地质学报, 2018, 26 (3): 758- 766. |
Li Zhiqing , Sun Yang , Hu Ruilin , et al. Quantitative analysis for nanopore structure characteristics of shales using NMR and NMR cryoporometry[J]. Journal of Engineering Geology, 26 (3): 758- 766. | |
36 |
Daigle H , Dugan B . An improved technique for computing permeability from NMR measurements in mudstones[J]. Journal of Geophysical Research, 2011, 116 B808101
doi: 10.1029/2011JB008353 |
37 | Odusina E, Sondergeld C, Rai C.NMR study of shale wettability[C]//Society of Petroleum Engineers.Canadian Unconventional Resources Conference.Alberta, Canada: 2011. |
38 | Rylander E, Singer P M, Jiang T, et al. NMR T2 distributions in the Eagle Ford shale: reflections on pore size[C]//Society of Petroleum Engineers.Unconventional Resources Conference-USA.Woodlands, USA: 2013. |
39 |
Clarkson C R , Solano N , Bustin R M , et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103, 606- 616.
doi: 10.1016/j.fuel.2012.06.119 |
40 | Ruppert L F , Sakurovs R , Blach T P , et al. A USANS/SANS study of the accessibility of pores in the Barnett Shale to methane and water[J]. Energy & Fuels, 2013, 27 (2): 772- 779. |
41 | Gu X , Mildner D F R , Cole D R , et al. Quantification of organic porosity and water accessibility in Marcellus shale using neutron scattering[J]. Energy & Fuels, 2016, 30 (6): 4438- 4449. |
42 | Lee S , Fischer T B , Stokes M R , et al. Dehydration effect on the pore size, porosity, and fractal parameters of shale rocks: Ultrasmall-Angle X-ray Scattering study[J]. Energy & Fuels, 2014, 28 (11): 6772- 6779. |
43 |
Sun M , Yu B , Hu Q , et al. Pore characteristics of Longmaxi shale gas reservoir in the Northwest of Guizhou, China: Investigations using small-angle neutron scattering(SANS), helium pycnometry, and gas sorption isotherm[J]. International Journal of Coal Geology, 2017, 171, 61- 68.
doi: 10.1016/j.coal.2016.12.004 |
44 |
Mayer J , Giannuzzi L A , Kamino T , et al. TEM sample preparation and FIB-induced damage[J]. MRS Bulletin, 2007, 32 (5): 400- 407.
doi: 10.1557/mrs2007.63 |
45 |
Sanei H , Ardakani O H . Alteration of organic matter by ion milling[J]. International Journal of Coal Geology, 2016, 163, 123- 131.
doi: 10.1016/j.coal.2016.06.021 |
46 | 王濡岳, 胡宗全, 刘敬寿, 等. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比——以黔北岑巩地区下寒武统为例[J]. 石油与天然气地质, 2018, 39 (4): 631- 640. |
Wang Ruyue , Hu Zongquan , Liu Jingshou , et al. Comparative analysis of characteristics and controlling factors of fractures in marine and continental shale: A case study of the Lower Cambrian in Cengong area, northern Guizhou Province[J]. Oil & Gas Geology, 2018, 39 (4): 631- 640. | |
47 | 张晨晨. 页岩气储层脆性评价方法与影响因素研究[D]. 北京: 中国石油勘探开发研究院, 2017. |
Zhang Chenchen.Research on brittleness evaluation method and inliuencing factors of shale gas reservoirs[D]. Beijing: Research Institute of Petroleum Exploration and Development, 2017. | |
48 | 杨恒林, 张俊杰, 王高成, 等. 四川威远及云南昭通区块龙马溪组优质页岩组构差异性与矿物纳米力学特征[J]. 天然气勘探与开发, 2018, 41 (1): 16- 22. |
Yang Henglin , Zhang Junjie , Wang Gaocheng , et al. Fabric difference and mineral nanomechanics characteristics of high-quality shale in Longmaxi Formation, Weiyuan block in Sichuan Basin and Zhaotong block in Yunnan Province[J]. Natural Gas Exploration and Development, 2018, 41 (1): 16- 22. | |
49 | 时贤, 蒋恕, 卢双舫, 等. 利用纳米压痕实验研究层理性页岩岩石力学性质——以渝东南酉阳地区下志留统龙马溪组为例[J]. 石油勘探与开发, 2019, 46 (1): 155- 164. |
Shi Xian , Jiang Shu , Lu Shuangfang , et al. Identification of mechanical properties of Longmaxi shale with beddings by nanoindentation tests: A case study on Silurian Longmaxi Formation of Youyang area in southeast Chongqing[J]. Petroleum Exploration and Development, 2019, 46 (1): 155- 164. | |
50 | 袁玉松, 刘俊新, 周雁. 泥页岩脆-延转化带及其在页岩气勘探中的意义[J]. 石油与天然气地质, 2018, 39 (5): 899- 906. |
Yuan Yusong , Liu Junxin , Zhou Yan . Brittle-ductile transition zone of shale and its implications in shale gas exploration[J]. Oil & Gas Geology, 2018, 39 (5): 899- 906. | |
51 |
He Z , Li S , Nie H , et al. The shale gas "sweet window": "The cracked and unbroken" state of shale and its depth range[J]. Marine and Petroleum Geology, 2019, 101, 334- 342.
doi: 10.1016/j.marpetgeo.2018.11.033 |
52 | Josh M , Esteban L , Piane C D , et al. Laboratory characterisation of shale properties[J]. Journal of Petroleum Science and Engineering, 2012, 88:89, 107- 124. |
53 | 钟建华, 刘圣鑫, 马寅生, 等. 页岩宏观破裂模式与微观破裂机理[J]. 石油勘探与开发, 2015, 42 (2): 242- 250. |
Zhong Jianhua , Liu Shengxin , Ma Yinsheng , et al. Macro-fracture mode and micro-fracture mechanism of shale[J]. Petroleum Exploration and Development, 2015, 42 (2): 242- 250. | |
54 | 赵志红, 郭建春, 杨经栋, 等. 页岩储层微观破裂特征实验研究[J]. 石油钻采工艺, 2014, 36 (3): 68- 71. |
Zhao Zhihong , Guo Jianchun , Yang Jingdong , et al. Experimental study of microscopic fracture characteristics of shale reservoirs[J]. Oil Drilling & Production Technology, 2014, 36 (3): 68- 71. | |
55 | Gerke K M, Karsanina M V, Sizonenko T O, et al. Multi-scale image fusion of X-ray microtomography and SEM data to model flow and transport properties for complex rocks on pore-level[C]//Society of Petroleum Engineers.Russian Petroleum Technology Conference.Moscow, Russia: 2017. |
56 | Sinn C J A , Klaver J , Fink R , et al. Using BIB-SEM imaging for permeability prediction in heterogeneous shales[J]. Geofluids, 2017, |
57 |
Wu T , Li X , Zhao J , et al. Multiscale pore structure and its effect on gas transport in organic-rich shale[J]. Water Resources Research, 2017, 53 (7): 5438- 5450.
doi: 10.1002/2017WR020780 |
58 |
Zhu W , Chang X , Wang Y , et al. Reconstruction ofhydraulic fractures using passive ultrasonic travel-time tomography[J]. Energies, 2018, 11 (5): 1321.
doi: 10.3390/en11051321 |
59 | 朱如凯, 金旭, 王晓琦, 等. 复杂储层多尺度数字岩石评价[J]. 地球科学, 2018, 43 (5): 1773- 1782. |
Zhu Rukai , Jin Xu , Wang Xiaoqi , et al. Multi-scale digital rock evaluation on complex reservoir[J]. Earth Science, 2018, 43 (5): 1773- 1782. | |
60 |
Renard F , McBeck J , Cordonnier B , et al. Dynamic in situ three-dimensional imaging and digital volume correlation analysis to quantify strain localization and fracture coalescence in sandstone[J]. Pure and Applied Geophysics, 2019, 176, 1083- 1115.
doi: 10.1007/s00024-018-2003-x |
61 |
Jacobs T . Reservoir-on-a-chip technology opens a new window into oilfield chemistry[J]. Journal of Petroleum Technology, 2019, 71 (1): 25- 27.
doi: 10.2118/0119-0025-JPT |
62 | 李金华, 潘永信. 透射电子显微镜在地球科学研究中的应用[J]. 中国科学: 地球科学, 2015, 45 (9): 1359- 1382. |
Li Jinhua , Pan Yongxin . Applications of transmission electron microscopy in the earth sciences[J]. Scientia Sinica Terrae, 2015, 45 (9): 1359- 1382. | |
63 |
Tian X , Daigle H . Machine-learning-based object detection in images for reservoir characterization: A case study of fracture detection in shales[J]. The Leading Edge, 2018, 37 (6): 435- 442.
doi: 10.1190/tle37060435.1 |
64 |
Kong L , Ostadhassan M , Li C , et al. Can 3-D printed gypsum samples replicate natural rocks? An experimental study[J]. Rock Mechanics and Rock Engineering, 2018, 51 (10): 3061- 3074.
doi: 10.1007/s00603-018-1520-3 |
65 | 杨国丰. 致力于降本增效, 石油行业全面拥抱信息技术[N]. 中国石化报, 2019-1-18(8). |
66 | Equinor.Digital operations supportcentres help boost production[EB/OL]. Equinor, 2019.https://www.equinor.com/en/news/2019-01-07-digital-operations-support-centres.html. |
67 | 董大忠, 施振生, 管全中, 等. 四川盆地五峰组-龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018, 38 (4): 67- 76. |
Dong Dazhong , Shi Zhensheng , Guan Quanzhong , et al. Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Indusrty, 2018, 38 (4): 67- 76. | |
68 | 何治亮, 胡宗全, 聂海宽, 等. 四川盆地五峰组-龙马溪组页岩气富集特征与"建造-改造"评价思路[J]. 天然气地球科学, 2017, 28 (5): 724- 733. |
He Zhiliang , Hu Zongquan , Nie Haikuan , et al. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J]. Natural Gas Geoscience, 2017, 28 (5): 724- 733. |
[1] | 李宁, 李瑞磊, 苗贺, 曹开芳, 田军. 松辽盆地深层中-基性火山岩有利相带及储层“甜点”逐级识别[J]. 石油与天然气地质, 2024, 45(3): 801-815. |
[2] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[3] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[4] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[5] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[6] | 黎瑞, 杨娇, 柴愈坤, 王华, 戴建文, 邓永辉, 孙爽, 马肖琳, 田腾飞. 大角度波浪控制下的浪成砂坝新模式[J]. 石油与天然气地质, 2024, 45(2): 530-541. |
[7] | 曾联波, 巩磊, 宿晓岑, 毛哲. 深层-超深层致密储层天然裂缝分布特征及发育规律[J]. 石油与天然气地质, 2024, 45(1): 1-14. |
[8] | 雷文智, 陈冬霞, 王永诗, 巩建强, 邱贻博, 王翘楚, 成铭, 蔡晨阳. 渤海湾盆地济阳坳陷东部深层砂砾岩多类型油气藏成藏机理及模式[J]. 石油与天然气地质, 2024, 45(1): 113-129. |
[9] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[10] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[11] | 远光辉, 彭光荣, 张丽丽, 孙辉, 陈淑慧, 刘浩, 赵晓阳. 珠江口盆地白云凹陷古近系深层高变温背景下储层成岩作用与低渗致密化机制[J]. 石油与天然气地质, 2024, 45(1): 44-64. |
[12] | 王冠民, 庞小军, 黄晓波, 张雪芳, 潘凯. 渤海海域辽中凹陷南部古近系东营组三段重力流砂岩优质储层特征及成因[J]. 石油与天然气地质, 2024, 45(1): 81-95. |
[13] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[14] | 胡东风, 魏志红, 刘若冰, 魏祥峰, 王威, 王庆波. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
[15] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||