石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (5): 1087-1101.doi: 10.11743/ogg20220507
施振生1(), 赵圣贤2, 赵群1, 孙莎莎1(), 周天琪1, 程峰1, 施少军3, 武瑾1
收稿日期:
2022-03-10
修回日期:
2022-07-19
出版日期:
2022-10-01
发布日期:
2022-09-02
通讯作者:
孙莎莎
E-mail:shizs69@petrochina.com.cn;sunss69@petrochina.com.cn
第一作者简介:
施振生(1976—),男,博士、高级工程师,细粒储层地质学。E?mail: 基金项目:
Zhensheng Shi1(), Shengxian Zhao2, Qun Zhao1, Shasha Sun1(), Tianqi Zhou1, Feng Cheng1, Shaojun Shi3, Jin Wu1
Received:
2022-03-10
Revised:
2022-07-19
Online:
2022-10-01
Published:
2022-09-02
Contact:
Shasha Sun
E-mail:shizs69@petrochina.com.cn;sunss69@petrochina.com.cn
摘要:
裂缝直接影响页岩储层特性和页岩气井单井测试产量。通过岩心和露头宏观裂缝描述、偏光显微镜和场发射扫描电镜微裂缝观察发现,川南地区五峰组-龙马溪组含气页岩宏观裂缝和微裂缝发育,可划分为顺层缝和非顺层缝。宏观裂缝中,顺层缝主要为页理缝和层间滑移缝,非顺层缝主要为斜交缝和垂直缝。微裂缝中,顺层缝主要为页理缝,非顺层主要为生烃增压缝、成岩收缩缝和溶蚀缝。含气页岩的裂缝以顺层缝为主,75 %的宏观裂缝和87 %的微裂缝均为顺层缝。裂缝密度和分布受埋深控制,埋深大于3 500 m地区裂缝集中发育于龙一1(1-3)小层,而埋深小于3 500 m地区裂缝集中发育于龙一1(1)小层。且随着埋深增加,宏观裂缝和微裂缝的密度均增大,部分井中埋深大于3 500 m含气页岩井宏观裂缝密度是其他埋深小于3 500 m同层含气页岩的10倍。页岩有机碳含量和层理类型也影响含气页岩的裂缝密度,高总有机碳含量的条带状粉砂型和砂-泥递变型水平层理页岩裂缝密度最大。裂缝发育有利于优质页岩段形成,埋深小于3 500 m地区优质页岩段主要发育于龙一1(1)小层;埋深大于3 500 m地区优质页岩段发育于龙一1(1-3)小层,部分井龙一2亚段底部由于成岩收缩缝发育,也成为优质页岩段。
中图分类号:
图2
川南地区五峰组-龙马溪组不同埋深含气页岩岩心和露头裂缝类型及特征a.顺层缝,页理缝,多数被有机质充填,少数方解石充填,长宁双河剖面,五峰组; b.顺层缝,页理缝,多数被有机质充填,少数被方解石充填,长宁双河剖面,五峰组; c.顺层缝,页理缝,多数被有机质充填,少数被方解石充填,长宁双河剖面,龙马溪组; d.顺层缝,层间滑移缝,方解石充填,阳107井,埋深1 209.05 m,龙一2亚段; e.顺层缝,层间滑移缝,方解石充填,含有大量黄铁矿,阳101H3-8井,埋深 3 744.27 m,龙一1(4)小层; f.斜交缝,方解石充填,阳105井,埋深1 690.10 m,龙一1(2)小层; g.斜交缝,方解石充填,含有大量黄铁矿,阳101H3-8井,埋深3 744.02 m,龙一2亚段; h.垂直缝,方解石充填,阳107井,埋深1 254.22 m,龙一1(2)小层(a—c为大薄片偏光显微镜照片;d—h为岩心照片。)"
图3
川南地区五峰组-龙马溪组不同埋深含气页岩微裂缝类型及特征常规薄片偏光显微镜照片a.顺层缝,硅质充填,阳101H3-8井,五峰组,埋深3 790.68 m; b.顺层缝,硅质充填,阳101H3-8井,五峰组,埋深3 788.69 m; c.顺层缝,硅质充填,阳101H3-8井,五峰组,埋深3 792.84 m; d.顺层缝,硅质充填,阳101H3-8井,龙一1(1)小层,埋深3 785.22 m; e.顺层缝,硅质充填,阳101H3-8井,龙一1(3)小层,埋深3 777.26 m; f.顺层缝,硅质充填,阳101H3-8井,龙一1(3)小层,埋深3 773.40 m; g.顺层缝,有机质充填,巫溪2井,龙一1(3)小层,埋深1 614.00 m; h.顺层缝,有机质、硅质充填,巫溪2井,龙一1(2)小层,埋深1 583.50 m; i.顺层缝,有机质充填,巫溪2井,龙一2亚段,埋深1 584.00 m; j.顺层缝,硅质充填,泸205井,龙一1(1)小层,埋深4 032.67 m; k.非顺层缝,树枝状,硅质充填,巫溪2井,龙一1(4)小层,埋深1 610.50 m; l.非顺层缝,网状,硅质充填,泸205井,龙一1(1)小层,埋深4 376.00 m"
图4
川南地区五峰组-龙马溪组不同埋深含气页岩顺层微裂缝类型及特征SEM照片a,b.页理缝,无充填,阳101H3-8井,五峰组,埋深3 789.30 m; c,d.页理缝,有机质充填,阳101H3-8井,龙一1(1)小层,埋深3 783.71 m; e.页理缝,充填少量围岩碎片,阳101H3-8井,龙一2亚段,埋深3 752.60 m; f.页理缝,无充填,阳101H3-8井,龙一1(4)小层,埋深3 765.29 m; g.页理缝,充填有机质和围岩碎片,阳101H3-8井,龙一1(2)小层,埋深3 781.95 m; h.页理缝,充填有机质,阳101H3-8井,龙一2亚段,埋深3 747.18 m; i.页理缝,充填有机质,有机质中含黄铁矿颗粒和围岩碎片,阳101H3-8井,龙一2亚段,埋深3 745.92 m; j.页理缝,有机质中含大量围岩碎片,阳101H3-8井,龙一1(3)小层,埋深3 773.40 m"
图5
川南地区五峰组-龙马溪组不同埋深含气页岩非顺层微裂缝类型及特征SEM照片a,b.生烃增压缝,裂缝沿着有机质与碎屑颗粒边缘分布,阳101H3-8井,龙一2亚段,埋深3 755.33 m; c.生烃增压缝,裂缝沿着有机质与碎屑颗粒边缘分布,充填少量围岩碎片,阳101H3-8井,龙一2亚段,埋深3 745.92 m; d.成岩收缩缝,分布于片状矿物内部,无充填,阳101H3-8井,龙一1(4)小层,埋深3 767.73 m; e.成岩收缩缝,分布于片状矿物内部,无充填,阳101H3-8井,龙一1(4)小层,埋深3 764.00 m; f.成岩收缩缝,分布于片状矿物内部,无充填,阳101H3-8井,龙一2亚段,埋深3 745.92 m; g.成岩收缩缝,分布于片状矿物内部,无充填,阳101H3-8井,五峰组,埋深3 793.80 m;h.成岩收缩缝,分布于片状矿物内部边缘,无充填,阳101H3-8井,五峰组,埋深3 788.69 m; i.成岩收缩缝,分布于片状矿物内部,无充填,阳101H3-8井,五峰组,埋深3 788.69 m; j.溶蚀缝,分布于碳酸盐矿物内部,充填少量方解石晶体,阳101H3-8井,龙一2亚段,埋深3 745.92 m;k.溶蚀缝,分布于碳酸盐矿物内部,无充填,阳101H3-8井,龙一2亚段,埋深3 755.33 m;l.溶蚀缝,分布于碳酸盐矿物边缘,无充填,阳101H3-8井,龙一1(3)小层,埋深3 777.26 m"
表2
川南地区五峰组-龙马溪组不同埋深含气页岩宏观裂缝密度对比"
层位 | 阳105井(压力系数1.2) | 威202井(压力系数1.4) | 阳101H3-8井(压力系数1.9) | 泸206井(压力系数2.2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
深度/m | 裂缝密度/ (条·m-1) | TOC/% | 深度/m | 裂缝密度/ (条·m-1) | TOC/% | 深度/m | 裂缝密度/ (条·m-1) | TOC/% | 深度/m | 裂缝密度/ (条·m-1) | TOC/% | |
龙二段 | 1 022.8~1 098.0 | 0.47 | 0.7 | — | — | — | — | — | — | — | — | — |
龙一2亚段 | 1 098.0~1 166.8 | 0.53 | 1.1 | 2 537.2~2 560.0 | 0.9 | 2.8 | 3 744.0~3 762.2 | 3.1 | 2.2 | 4 014.5~4 017.1 | 1.7 | 1.8 |
龙一1(4)小层 | 1 166.8~1 180.2 | 0.15 | 2.5 | 2 560.0~2 567.5 | 1.1 | 3.5 | 3 762.2~3 770.5 | 2.6 | 2.7 | 4 017.1~4 026.0 | 3.6 | 2.2 |
龙一1(3)小层 | 1 180.2~1 194.0 | 0.14 | 3.5 | 2 567.5~2 570.6 | 1.2 | 3.9 | 3 770.5~3 778.4 | 3.3 | 4.4 | 4 026.0~4 033.8 | 4.4 | 3.2 |
龙一1(2)小层 | 1 194.0~1 200.2 | 0.54 | 4.1 | 2 570.6~2 572.6 | 1.6 | 5.3 | 3 778.4~3 781.9 | 2.9 | 4.9 | 4 033.8~4 038.0 | 5.1 | 4.3 |
龙一1(1)小层 | 1 200.2~1 201.5 | 0.77 | 6.5 | 2 572.6~2 574.0 | 5.4 | 6.1 | 3 781.9~3 784.6 | 5.9 | 5.1 | 4 038.0~4 040.8 | 7.8 | 4.8 |
五峰组 | 1 201.5~1 202.6 | 1.82 | 4.5 | 2 574.0~2 581.9 | 1.3 | 2.0 | 3 784.6~3 792.6 | 1.1 | 2.4 | 4 040.8~4 051.8 | 3.2 | 2.2 |
1 | Gale J F W, Laubach S E, Olson J E, et al. Natural fractures in shale: A review and new observations[J]. AAPG Bulletin, 2014, 98(11): 2165-2216. |
2 | Gale J F, Reed R M, Holder J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. AAPG Bulletin, 2007, 91(4): 603-622. |
3 | 王玉满, 李新景, 董大忠, 等. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9): 1602-1610. |
Wang Yuman, Li Xinjing, Dong Dazhong, et al. Development mechanism of fracture pores in marine shale and its geological significance[J]. Natural Gas Geoscience, 2016, 27(9): 1602-1610. | |
4 | 郭旭升, 胡东风, 魏祥峰, 等. 四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J]. 石油与天然气地质, 2016, 37(6): 799-808. |
Guo Xusheng, Hu Dongfeng, Wei Xiangfeng, et al. Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(6): 799-808. | |
5 | 汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类型及其对储层物性影响[J]. 石油与天然气地质, 2019, 40(1): 41-49. |
Wang Hu, He Zhiliang, Zhang Yonggui, et al. Microfracture types of marine shale reservoir of Sichuan Basin and its influence on reservoir property[J]. Oil & Gas Geology, 2019, 40(1): 41-49. | |
6 | Zeng L, Liu W, Li J, et al. Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 30: 1-9. |
7 | 董大忠, 施振生, 孙莎莎, 等. 黑色页岩微裂缝发育控制因素—以长宁双河剖面五峰组—龙马溪组为例[J]. 石油勘探与开发, 2018, 45(5): 763-774. |
Dong Dazhong, Shi Zhensheng, Sun Shasha, et al. Factors controlling microfractures in black shale: A case study of Ordovician Wufeng Formation—Silurian Longmaxi Formation in Shuanghe Profile, Changning area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5): 763-774. | |
8 | 田鹤, 曾联波, 徐翔, 等. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J]. 石油与天然气地质, 2020, 41(3): 474-483. |
Tian He, Zeng Lianbo, Xu Xiang, et al. Characteristics of natural fractures in marine shale in Fuling area, Sichuan Basin, and their influence on shale gas[J]. Oil & Gas Geology, 2020, 41(3): 474-483. | |
9 | 王红岩, 施振生, 孙莎莎, 等. 四川盆地及周缘志留系龙马溪组一段深层页岩储层特征及其成因[J]. 石油与天然气地质, 2021, 42(1): 66-75. |
Wang Hongyan, Shi Zhensheng, Sun Shasha, et al. Characterization and genesis of deep shale reservoirs in the first Member of the Silurian Longmaxi Formation in southern Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2021, 42(1): 66-75. | |
10 | 张元动, 陈旭. 奥陶纪笔石动物的多样性演变与环境背景[J]. 中国科学(D辑:地球科学), 2008, (1): 10-21. |
Zhang Yuandong, Chen Xu. Diversity evolution and environmental background of Ordovician graptolites[J]. Science in China Series D: Earth Sciences, 2008, (1): 10-21. | |
11 | 施振生, 董大忠, 王红岩, 等. 含气页岩不同纹层及组合储集层特征差异性及其成因—以四川盆地下志留统龙马溪组一段典型井为例[J]. 石油勘探与开发, 2020, 47(4): 829-840. |
Shi Zhensheng, Dong Dazhong, Wang Hongyan, et al. Reservoir characteristics and genetic mechanisms of gas‑bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(4): 829-840. | |
12 | 刘宝珺, 许效松, 潘杏南, 等. 中国南方古大陆地壳演化与成矿[M]. 北京: 科学出版社, 1993. |
Liu Baojun, Xu Xiaosong, Pan Xingnan, et al. Evolution and mineralization of earth crust of paleocontinent in South China [M]. Beijing: Science Press, 1993. | |
13 | 赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J]. 天然气地球科学, 2016, 27(3): 470-487. |
Zhao Songxian, Yang Yueming, Zhang Jian, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2016, 27(3): 470-487. | |
14 | Wang Hongyan, Shi Zhensheng, Zhao Qun, et al. Stratigraphic framework of the Wufeng-Longmaxi shale in and around the Sichuan Basin, China: Implications for targeting shale gas[J]. Energy Geoscience, 2020, 1(3-4): 124-133. |
15 | 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. |
Ma Yongsheng, Cai Xunyu, Zhao Peirong. China's shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. | |
16 | 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796. |
Zou Caineng, Zhao Qun, Dong Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796. | |
17 | Zhao J, Jin Z, Jin Z, et al. Origin of authigenic quartz in organic⁃rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for pore evolution[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 21-38. |
18 | Lash G G, Engelder T. An analysis of horizontal microcracking during catagenesis: Example from the Catskill delta complex[J]. AAPG Bulletin, 2005, 89(11): 1433-1449. |
19 | Ougier-Simonin A, Renard F, Boehe C, et al. Microfracturing and microporosity in shales[J]. Earth‑Science Reviews, 2016, 162: 198-226. |
20 | 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2): 212-220. |
Ding Wenlong, Li Chao, Li Chunyan, et al. Dominant factor of fracture development in shale and its relationship to gas accumulation[J]. Earth Science Frontiers, 2012, 19(2): 212-220. | |
21 | Zeng W, Zhang J, Ding W, et al. Fracture development in Paleozoic shale of Chongqing area (South China). Part one: Fracture characteristics and comparative analysis of main controlling factors[J]. Journal of Asian Earth Sciences, 2013, 75: 251-266. |
22 | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学, 2016, 27(2): 377-386. |
Zhao J, Jin Z, Jin Z, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386. | |
23 | 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78. |
Teng G, Shen B, Yu L, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng‑Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78. | |
24 | 牟传龙, 葛祥英, 许效松, 等. 中上扬子地区晚奥陶世岩相古地理及其油气地质意义[J]. 古地理学报, 2014, (4): 427-440. |
Mou Chuanlong, Ge Xiangyin, Xu Xiaosong, et al. Lithofacies palaeogeography of the Late Ordovician and its petroleum geological significance in Middle‑Upper Yangtze Region[J]. Journal of Palaeogeography, 2014, (4): 427-440. | |
25 | Macquaker J H, Bentley S J, Bohacs K M. Wave‑enhanced sediment‑gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10): 947-950. |
26 | Jarvie D M, Hill R J, Pollastro R M. Evaluation of unconventional natural gas prospects: The Barnett Shale fractured shale gas model[C]. Poland: IMOG Research Conference,2003. |
27 | 施振生, 邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报, 2021, 39(1): 181-196. |
Shi Zhensheng, Qiu Zhen. Main bedding types of marine fine⁃grained sediments and their significance for oil and gas exploration and development[J]. Acta Sedimentologica Sinica, 2021, 39(1): 181-196. | |
28 | Shi Zhensheng, Zhou Tianqi, Wang Hongyan, et al. Depositional structures and their reservoir characteristics in the Wufeng⁃Longmaxi Shale in Southern Sichuan Basin, China[J]. Energies, 2022, 15(5): 1618. |
29 | 熊周海, 操应长, 王冠民, 等. 湖相细粒沉积岩纹层结构差异对可压裂性的影响[J]. 石油学报, 2019, 40(1): 74-85. |
Xiong Zhouhai, Cao Yingchang, Wang Guanming, et al. Influence of laminar structure differences on the fracability of lacustrine fine‑grained sedimentary rocks[J]. Acta Petrolei Sinica, 2019, 40(1): 74-85. | |
30 | 王永辉, 刘玉章, 丁云宏, 等. 页岩层理对压裂裂缝垂向扩展机制研究[J]. 钻采工艺, 2017, 40(5): 39-42. |
31 | Wang Yonghui, Liu Yuzhang, Ding Yunhong, et al. Research on influence of shale bedding to vertical extension mechanism of hydraulic fracture[J]. Drilling & Production Technology, 2017, 40(5): 39-42. |
32 | 孙可明, 冀洪杰, 张树翠. 页岩层理方位及强度对水力压裂的影响[J]. 实验力学, 2020, 35(2): 343-348. |
Sun Keming, Ji Hongjie, Zhang Shucui. Influence of bedding azimuth and strength on hydraulic fracturing in shale[J]. Journal of Experimental Mechanics, 2020, 35(2): 343-348. | |
33 | 丁文龙, 张博闻, 李泰明. 古龙凹陷泥岩非构造裂缝的形成[J]. 石油与天然气地质, 2003, 24(1): 50-54. |
Ding Wenlong, Zhang Bowen, Li Taiming. Formation of non⁃tectonic fractures in mudstones in Gulong Depression [J]. Oil & Gas Geology, 2003, 24(1): 50-54. | |
34 | Zou C, Qiu Z, poulton S W, et al. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction[J]. Geology, 2018, 46(6): 535-538. |
35 | 梁兴, 徐政语, 张朝, 等. 昭通太阳背斜区浅层页岩气勘探突破及其资源开发意义[J]. 石油勘探与开发, 2020, 47(1): 11-28. |
Liang Xin, Xu Zhengyu, Zhang Zao, et al. Breakthrough of shallow shale gas exploration in Taiyang anticline area and its significance for resource development in Zhaotong, Yunnan province, China[J]. Petroleum Exploration and Development, 2020, 47(1): 11-28. | |
36 | 郭旭升, 胡东风, 黄仁春, 等. 四川盆地深层—超深层天然气勘探进展与展望[J]. 天然气工业, 2020, 40(5): 1-14. |
Guo Xusheng, Hu Dongfeng, Huang Renchun, et al. Deep and ultra-deep natural gas exploration in the Sichuan Basin: Progress and prospect [J]. Natural Gas Industry, 2020, 40(5): 1-14. |
[1] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[2] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[3] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[4] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[5] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[6] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[7] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[8] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[9] | 胡东风, 魏志红, 刘若冰, 魏祥峰, 王威, 王庆波. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
[10] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[11] | 施振生, 赵圣贤, 周天琪, 孙莎莎, 袁渊, 张成林, 李博, 祁灵. 海相含气页岩水平层理类型、成因及其页岩气意义[J]. 石油与天然气地质, 2023, 44(6): 1499-1514. |
[12] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[13] | 李双建, 李智, 张磊, 李英强, 孟宪武, 王海军. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
[14] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[15] | 刘昇, 范存辉, 张本健, 张亚, 王尉, 罗冰, 白晓亮. 四川盆地东部中二叠统茅口组孤峰段展布特征及其油气地质意义[J]. 石油与天然气地质, 2023, 44(4): 993-1008. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||