石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (5): 1259-1270.doi: 10.11743/ogg20220520
郭喜浩1(), 徐昉昊1(), 黄晓波2, 江涛2, 梁浩然1, 李长志1, 李智超1
收稿日期:
2021-09-24
修回日期:
2022-07-10
出版日期:
2022-10-01
发布日期:
2022-09-02
通讯作者:
徐昉昊
E-mail:419312387@qq.com;xufanghao17@cdut.edu.cn
第一作者简介:
郭喜浩(1997—),男,硕士研究生,油气藏地质学与成藏动力学。E?mail: 基金项目:
Xihao Guo1(), Fanghao Xu1(), Xiaobo Huang2, Tao Jiang2, Haoran Liang1, Changzhi Li1, Zhichao Li1
Received:
2021-09-24
Revised:
2022-07-10
Online:
2022-10-01
Published:
2022-09-02
Contact:
Fanghao Xu
E-mail:419312387@qq.com;xufanghao17@cdut.edu.cn
摘要:
多元统计分析可以综合考虑多个相关参数间的相互联系,在分类判别方面具有独特的优势,是多套烃源岩发育的复杂背景下油气源对比的有效方法。然而不同的多元统计方法在同一案例中的对比应用以及各自的适用性尚没有学者进行专门的研究分析。渤海湾盆地渤东凹陷发育多套烃源岩,不同构造的油气来源异常复杂,是利用多元统计分析进行油-源对比的最佳案例。综合对比主成分分析、Fisher线性判别分析以及Bayes线性判别分析的应用情况,发现主成分分析不能区分不同层位的烃源岩,因而不能用于渤东凹陷的油源对比,而Fisher和Bayes线性判别分析建立的模型可以区分不同层位的烃源岩,但都不能准确识别混源油。在Bayes判别模型得到的分类概率的基础上,通过优化Bayes判别模型的判别准则,建立了适用于渤东凹陷的油源判别模型,并识别出渤东凹陷存在4类油族,其中油族A、油族B、油族C分别来源于东营组三段(东三段)、沙一段-沙二段、沙三段烃源岩,而油族D为来源于东三段和沙一段-沙二段烃源岩的混源油。
中图分类号:
表1
渤东凹陷烃源岩生物标志化合物参数"
井号 | 深度/m | 层位 | Pr/Ph | ETR | 4-MSI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LD28-A | 2 920~2 930 | Ed3 | 1.88 | 0.26 | 0.03 | 0.11 | 0.14 | 2.48 | 1.87 | 1.25 | 0.01 | 0.07 |
LD28-A | 2 960~2 970 | Ed3 | 1.89 | 0.21 | 0.04 | 0.10 | 0.09 | 0.53 | 1.22 | 1.95 | 0.01 | 0.11 |
LD34-A | 2 850~2 860 | Ed3 | 1.50 | 0.11 | 0.10 | 0.06 | 0.04 | 0.31 | 0.77 | 3.61 | 0.01 | 0.31 |
PL14-A | 3 200~3 210 | Ed3 | 1.06 | 0.25 | 0.06 | 0.09 | 0.07 | 0.60 | 0.80 | 2.33 | 0.01 | 0.20 |
PL14-A | 3 400~3 410 | Ed3 | 1.02 | 0.11 | 0.07 | 0.10 | 0.07 | 0.45 | 0.86 | 2.64 | 0.01 | 0.19 |
PL14-A | 3 600~3 610 | Ed3 | 0.84 | 0.12 | 0.09 | 0.12 | 0.12 | 0.55 | 1.01 | 2.03 | 0.02 | 0.24 |
PL14-A | 3 700~3 715 | Ed3 | 0.97 | 0.15 | 0.11 | 0.12 | 0.19 | 0.49 | 1.13 | 2.63 | 0.03 | 0.29 |
PL14-B | 2 740~2 760 | Ed3 | 1.62 | 0.11 | 0.07 | 0.11 | 0.07 | 0.53 | 0.89 | 2.51 | 0.01 | 0.20 |
PL14-B | 2 760~2 780 | Ed3 | 1.45 | 0.11 | 0.08 | 0.12 | 0.06 | 0.63 | 0.97 | 2.89 | 0.01 | 0.21 |
LD28-A | 3 000~3 010 | Es1-2 | 1.34 | 0.32 | 0.07 | 0.13 | 0.40 | 0.38 | 0.99 | 1.80 | 0.07 | 0.19 |
LD34-A | 2 930~2 940 | Es1-2 | 0.57 | 0.44 | 0.33 | 0.12 | 0.22 | 0.07 | 0.69 | 7.30 | 0.05 | 1.20 |
LD34-C | 2 030~2 040 | Es1-2 | 1.25 | 0.41 | 0.31 | 0.16 | 0.23 | 0.17 | 1.03 | 15.96 | 0.04 | 1.81 |
LD34-C | 2 080~2 090 | Es1-2 | 1.31 | 0.41 | 0.29 | 0.17 | 0.41 | 0.20 | 0.88 | 10.97 | 0.09 | 1.46 |
LD34-C | 2 110~2 120 | Es1-2 | 0.99 | 0.59 | 0.33 | 0.14 | 0.44 | 0.11 | 0.89 | 11.69 | 0.08 | 0.95 |
LD34-C | 2 140~2 150 | Es1-2 | 0.47 | 0.37 | 0.21 | 0.16 | 0.59 | 0.33 | 1.42 | 4.56 | 0.09 | 0.44 |
LK8-A | 2 670~2 680 | Es1-2 | 0.52 | 0.56 | 0.23 | 0.18 | 1.08 | 0.10 | 0.88 | 2.71 | 0.19 | 0.78 |
LK9-A | 2 170~2 180 | Es1-2 | 1.73 | 0.17 | 0.06 | 0.16 | 0.08 | 0.07 | 1.00 | 5.07 | 0.01 | 0.19 |
LK9-A | 2 240~2 250 | Es1-2 | 0.94 | 0.59 | 0.25 | 0.15 | 0.65 | 0.09 | 0.71 | 5.39 | 0.14 | 0.83 |
PL3-A | 2 410~2 420 | Es1-2 | 1.62 | 0.11 | 0.12 | 0.08 | 0.06 | 0.48 | 1.02 | 5.13 | 0.01 | 0.26 |
PL3-A | 2 460~2 470 | Es1-2 | 1.43 | 0.12 | 0.14 | 0.11 | 0.06 | 0.32 | 0.91 | 4.66 | 0.01 | 0.38 |
PL9-A | 2 630~2 640 | Es1-2 | 2.19 | 0.16 | 0.10 | 0.11 | 0.03 | 0.33 | 1.06 | 7.38 | 0.01 | 0.26 |
PL14-A | 3 815~3 825 | Es1-2 | 1.23 | 0.28 | 0.09 | 0.09 | 0.34 | 0.35 | 1.18 | 2.52 | 0.06 | 0.26 |
PL14-A | 3 888~3 891 | Es1-2 | 1.04 | 0.12 | 0.08 | 0.09 | 0.09 | 0.53 | 0.94 | 2.47 | 0.02 | 0.20 |
PL14-A | 2 840~2 860 | Es1-2 | 0.96 | 0.15 | 0.12 | 0.15 | 0.13 | 0.28 | 0.96 | 3.68 | 0.03 | 0.35 |
LD34-B | 2 200~2 210 | Es3 | 1.52 | 0.45 | 0.21 | 0.17 | 0.33 | 0.15 | 0.96 | 7.23 | 0.06 | 0.53 |
LD34-B | 2 250~2 260 | Es3 | 1.71 | 0.48 | 0.21 | 0.23 | 0.37 | 0.30 | 1.11 | 6.43 | 0.06 | 0.55 |
LD34-B | 2 350~2 360 | Es3 | 1.30 | 0.39 | 0.12 | 0.14 | 0.25 | 0.31 | 0.87 | 4.39 | 0.04 | 0.22 |
LD34-B | 2 370~2 380 | Es3 | 1.39 | 0.34 | 0.17 | 0.15 | 0.29 | 0.13 | 0.87 | 5.54 | 0.06 | 0.34 |
LD34-C | 2 180~2 190 | Es3 | 0.70 | 0.48 | 0.21 | 0.18 | 1.00 | 0.15 | 0.76 | 2.98 | 0.26 | 0.50 |
LD34-C | 2 200~2 210 | Es3 | 1.59 | 0.22 | 0.16 | 0.09 | 1.25 | 0.16 | 0.81 | 1.91 | 0.34 | 0.42 |
PL9-A | 2 830~2 840 | Es3 | 0.61 | 0.51 | 0.18 | 0.17 | 0.48 | 0.08 | 0.81 | 2.74 | 0.13 | 0.61 |
PL25-A | 1 653~1 656 | Es3 | 0.21 | 0.56 | 0.14 | 0.19 | 1.02 | 0.27 | 0.42 | 1.27 | 0.20 | 0.29 |
PL25-A | 1 887~1 890 | Es3 | 0.23 | 0.61 | 0.13 | 0.28 | 1.20 | 0.03 | 0.50 | 1.28 | 0.26 | 0.30 |
PL25-A | 1 974~1 977 | Es3 | 0.27 | 0.59 | 0.11 | 0.14 | 0.73 | 0.02 | 0.44 | 1.47 | 0.16 | 0.35 |
表3
渤东凹陷烃源岩样品Fisher判别模型与Bayes判别模型的判别结果"
井号 | 深度/m | 层位 | Fisher判别分析 | Bayes判别分析 | 油族 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | 分类 | Y1 | Y2 | Y3 | 概率1 | 概率2 | 概率3 | 分类 | ||||
LD28-A | 2 530 | Ng | 2.22 | 0.28 | 3 | 29.87 | 35.37 | 38.27 | 0 | 0.05 | 0.95 | 3 | C |
LD32-A | 2 388 | Ng | -0.28 | -0.89 | 1 | 12.42 | 12.57 | 10.35 | 0.42 | 0.52 | 0.06 | 2 | D |
LD32-A | 2 662 | Ng | 0.90 | -1.17 | 3 | 15.06 | 16.40 | 17.69 | 0.05 | 0.20 | 0.75 | 3 | C |
LD32-A | 2 745 | Ng | 1.74 | -0.80 | 3 | 17.64 | 20.81 | 23.84 | 0 | 0.04 | 0.95 | 3 | C |
LD32-A | 2 917 | Ed2U-Ed1 | 1.59 | -0.49 | 3 | 16.11 | 19.60 | 21.81 | 0 | 0.10 | 0.90 | 3 | C |
LD32-B | 2 792 | Ed2U-Ed1 | -1.70 | -1.37 | 1 | 15.30 | 12.53 | 7.20 | 0.94 | 0.06 | 0 | 1 | A |
LD32-B | 2 909 | Ed2U-Ed1 | -0.33 | -1.68 | 1 | 21.33 | 19.96 | 18.67 | 0.74 | 0.21 | 0.06 | 1 | A |
LD34-A | 2 417 | Ed2U-Ed1 | -0.55 | -0.99 | 1 | 11.18 | 10.72 | 7.93 | 0.58 | 0.40 | 0.02 | 1 | D |
LD34-A | 2 634 | Ed3-Ed2L | -2.55 | 1.16 | 2 | 10.42 | 10.67 | -0.23 | 0.36 | 0.64 | 0 | 2 | D |
LD34-B | 1 971 | Ed2U-Ed1 | 5.04 | -1.88 | 3 | 41.93 | 47.88 | 61.10 | 0 | 0 | 1.00 | 3 | C |
LD34-B | 2 142 | Ed3-Ed2L | 3.94 | 0.57 | 3 | 28.29 | 36.74 | 43.83 | 0 | 0 | 1.00 | 3 | C |
LD34-B | 2 364 | Es3 | 1.43 | -0.21 | 3 | 20.08 | 23.75 | 25.18 | 0 | 0.19 | 0.81 | 3 | C |
LD34-C | 2 131 | Es1-2 | -0.40 | -0.63 | 2 | 15.31 | 15.67 | 12.82 | 0.36 | 0.60 | 0.04 | 2 | D |
LD34-C | 2 150 | Es1-2 | -0.45 | -0.40 | 2 | 14.32 | 15.02 | 11.74 | 0.29 | 0.68 | 0.03 | 2 | D |
LK8-A | 1 845 | Ng | -1.51 | -1.26 | 1 | 10.94 | 8.64 | 3.66 | 0.90 | 0.10 | 0 | 1 | A |
LK8-A | 1 963 | Ng | -2.59 | -1.46 | 1 | 5.80 | 1.62 | -5.97 | 0.98 | 0.02 | 0 | 1 | A |
LK8-A | 1 963 | Ng | -2.46 | -2.12 | 1 | 7.57 | 2.39 | -4.00 | 0.99 | 0.01 | 0 | 1 | A |
LK9-A | 1 292 | NmL | -1.83 | -0.87 | 1 | 7.32 | 5.26 | -1.08 | 0.88 | 0.12 | 0 | 1 | A |
LK9-A | 1 293~1 309 | NmL | -2.57 | -0.94 | 1 | 7.32 | 5.26 | -1.08 | 0.88 | 0.12 | 0 | 1 | A |
LK9-A | 1 308 | NmL | -2.93 | -1.04 | 1 | 4.94 | 0.99 | -8.05 | 0.98 | 0.02 | 0 | 1 | A |
LK9-A | 1 515 | Ng | -3.27 | -0.46 | 1 | 13.14 | 9.74 | -0.97 | 0.97 | 0.03 | 0 | 1 | A |
LK9-A | 2 211 | Es1-2 | 4.51 | 1.21 | 3 | 30.85 | 41.02 | 48.76 | 0 | 0 | 1.00 | 3 | C |
LK9-B | 1 773 | Ed2 | -1.97 | 3.00 | 2 | 12.16 | 16.62 | 4.85 | 0.01 | 0.99 | 0 | 2 | B |
PL3-A | 1 709 | Ng | -1.11 | 0.38 | 2 | 11.62 | 12.68 | 6.61 | 0.22 | 0.78 | 0 | 2 | B |
PL3-A | 2 234 | Ed2U-Ed1 | -0.56 | 0.60 | 2 | 16.44 | 18.64 | 13.73 | 0.08 | 0.91 | 0.01 | 2 | B |
PL3-A | 2 256 | Ed2U-Ed1 | -1.21 | 0.72 | 2 | 17.07 | 18.63 | 11.85 | 0.15 | 0.85 | 0 | 2 | B |
PL9-A | 2 455 | Ed2U-Ed1 | -1.82 | -0.58 | 1 | 13.52 | 11.92 | 5.24 | 0.81 | 0.19 | 0 | 1 | A |
PL9-B | 1 675~1 700 | Ng | -3.53 | -0.46 | 1 | 7.92 | 4.10 | -7.29 | 0.98 | 0.02 | 0 | 1 | A |
1 | Wang Y P, Zou Y R, Shi J T, et al. Review of the chemometrics application in oil‑oil and oil‑source rock correlations[J]. Journal of Natural Gas Geoscience, 2018, 3(4): 217-232. |
2 | Zhang L P, Bai G P, Zhao X Z, et al. Oil‑source correlation in the slope of the Qikou Depression in the Bohai Bay Basin with discriminant analysis[J]. Marine and Petroleum Geology, 2019, 109: 641-657. |
3 | Ye T, Chen A Q, Hou M C, et al. Characteristic of the Bodong segment of the Tanlu Fault Zone, Bohai sea area, eastern China: Implications for hydrocarbon exploration and regional tectonic evolution[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108473. |
4 | Jürgen R, Dietrich H W. Oil‑oil and oil‑condensate correlation by low eV GC‑MS measurements of aromatic hydrocarbons[J]. Physics and Chemistry of the Earth, 1980, 12: 93-102. |
5 | Øygard K, Grahl‑Nielsen O, Ulvøen S. Oil/oil correlation by aid of chemometrics[J]. Organic Geochemistry, 1984, 6: 561-567. |
6 | Zumberge J E. Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1625-1637. |
7 | Li C Z, Xu G S, Xu F H, et al. A model for faults to link the Neogene reservoirs to the Paleogene organic‑rich sediments in low‑relief regions of the south Bohai Sea, China[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108360. |
8 | Wu Z P, Cheng Y J, Yan S Y, et al. Development characteristics of the fault system and its control on basin structure, Bodong Sag, East China[J]. Petroleum Science, 2013, 10: 450-457. |
9 | 李春荣.渤海海域渤东凹陷结构特征与勘探方向[J].海洋石油,2015,35(4):1-7+34. |
Li Chunrong. Structure Characteristics and Favorable Hydrocarbon Exploration Zone of Bodong Depression in Bohai Sea Area[J]. Offshore Oil, 2015, 35(4): 1-7+34. | |
10 | 李宏义,刘丽芳,吴克强,等.渤海海域渤东凹陷烃源岩特征与勘探潜力[J].地质科技情报,2015,34(6):131-135. |
Li Hongyi, Liu Lifang, Wu Keqiang, et al. Characteristics of source rocks and exploration potential in Bodong Sag, Bohai Sea Area[J]. Bulletin of Geological Science and Technology, 2015, 34(6): 131-135. | |
11 | Wang Q, Hao F, Xu C G, et al. Geochemical characterization of QHD29 oils on the eastern margin of Shijiutuo uplift, Bohai Sea, China: Insights from biomarker and stable carbon isotope analysis[J]. Marine and Petroleum Geology, 2015, 64: 266-275. |
12 | 蒋有录,苏圣民,刘华,等.渤海湾盆地油气成藏期差异性及其主控因素[J].石油与天然气地质,2021,42(6):1255-1264. |
Jiang Youlu, Su Shengming, Liu Hua, et al. Differences in hydrocarbon accumulation stages and main controlling factors in the Bohai Bay Basin[J]. Oil & Gas Geology, 2021, 42(6) :1255-1264. | |
13 | 张参,牛成民,官大勇,等.渤东凹陷东南斜坡构造变换带识别及其石油地质意义[J].海洋地质前沿,2017,33(1):36-42. |
Zhang Can, Niu Chengming, Guan Dayong, et al. Identification of structural transfer zones on southeast slope of Bodong Sag and its implications for hydrocarbon accumulation[J]. Marine Geology Frontiers, 2017, 33(1): 36-42. | |
14 | Huang L, Liu C Y. Evolutionary characteristics of the sags to the east of Tan‑Lu Fault Zone, Bohai Bay Basin (China): Implications for hydrocarbon exploration and regional tectonic evolution[J]. Journal of Asian Earth Sciences, 2014, 79: 275-287. |
15 | 刘朋波,官大勇,王昕,等.渤东地区新近系“脊-断”耦合控藏模式与定量表征[J].成都理工大学学报(自然科学版),2017,44(4):470-477. |
Liu Pengbo, Guan Dayong, Wang Xin, et al. Study on quantitative characterization of “ridge‑fault” coupling reservoir⁃controlling model in the Neogene of Bodong area, Bohai Sea, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2017, 44(4): 470-477. | |
16 | 薛永安,王飞龙,汤国民,等.渤海海域页岩油气地质条件与勘探前景[J].石油与天然气地质,2020,41(4):696-709. |
Xue Yongan, Wang Feilong, Tang Guoming, et al. Geological condition and exploration prospect of shale oil and gas in the Bohai Sea[J]. Oil & Gas Geology, 2020, 41(4) :696-709. | |
17 | 刘丽芳,林青,吴克强,等.渤海海域渤东地区烃源特征及资源潜力[J].海洋地质前沿,2015,31(9):28-37. |
Liu Lifang, Lin Qing, Wu Keqiang, et al. Characteristics of hydrocarbon source rocks and resource potential in the Bodong region of Bohai Sea Basin[J]. Marine Geology Frontiers, 2015, 31(9): 28-37. | |
18 | 王蓓,尹太举.渤东中部地区新近系储集体控砂因素分析[J].石油知识,2014,30(1):50-51. |
Wang Bei, Yin Taiju. Analysis of sand control factors of Neogene reservoir in central Bodong area[J]. Petroleum Knowledge, 2014, 30(1): 50-51. | |
19 | 詹润,朱光,杨贵丽,等.渤海海域新近纪断层成因与动力学状态[J].地学前缘,2013,20(4):151-165. |
Zhan Run, Zhu Guang, Yang Guili, et al. The genesis of the faults and the geodynamic environment during Neogene for offshore of the Bohai sea[J]. Earth Science Frontiers, 2013, 20(4): 151-165. | |
20 | Hao F, Zhou X H, Zhu Y M, et al. Mechanisms of petroleum accumulation in the Bozhong sub-basin, Bohai Bay Basin, China. Part 1: Origin and occurrence of crude oils[J]. Marine & Petroleum Geology,2009,26(8):1528-1542. |
21 | Wang Q, Hao F, Xu C G, et al. Geochemical characterization of QHD29 oils on the eastern margin of Shijiutuo uplift, Bohai Sea, China: Insights from biomarker and stable carbon isotope analysis[J]. Marine and Petroleum Geology, 2015, 64: 266-275. |
22 | Tian J Q, Hao F, Zhou X H, et al. Distribution, controlling factors, and oil‑source correlation of biodegraded oil in the Bohai loffshore area, Bohai Bay basin, China[J]. AAPG Bulletin, 2017, 101(3): 361-386. |
23 | 昝灵,张枝焕,王顺华,等.4-甲基甾烷在油源对比中的应用——以渤南洼陷北部陡坡带为例[J].沉积学报,2012,30(4):770-778. |
Zan Ling, Zhang Zhihuan, Wang Shunhua, et al. Application of 4‑methyl steranes in oil‑source correlation:A case study from northern steep slope zone of Bonan Sag[J]. Acta Sedimentologica Sinica, 2012, 30(4): 770-778. | |
24 | Gürgey K. Correlation, alteration, and origin of hydrocarbons in the GCA, Bahar, and Gum Adasi fields, western South Caspian Basin: geochemical and multivariate statistical assessments[J]. Marine and Petroleum Geology, 2003, 20(10): 1119-1139. |
25 | 檀朝东,贺甲元,周彤,等.基于PCA‑BNN的页岩气压裂施工参数优化[J].西南石油大学学报(自然科学版),2020,42(6):56-62. |
Tan Chaodong, He Jiayuan, Zhou Tong, et al. A study on the optimization of fracturing operation parameters based on PCA‑BNN[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6): 56-62. | |
26 | 申波,王刚,樊海涛,张金风,等.一种基于变骨架参数的孔隙度预测新方法[J].石油与天然气地质,2022,43(3):711-716. |
Shen Bo, Wang Gang, Fan Haitao, et al. A new method for porosity prediction based on variable matrix parameters[J]. Oil & Gas Geology, 2022, 43(3): 711-716. | |
27 | Wang Y P, Zhang F, Zou Y R, et al. Chemometrics reveals oil sources in the Fangzheng Fault Depression, NE China[J]. Organic Geochemistry, 2016, 102: 1-13. |
28 | Maria A M, Caroline A, Eliane S, et al. Degradation‑resistant biomarkers in the Pirambóia Formation tar sands (Triassic) and their correlation with organic facies of the Irati Formation source rocks (Permian), Paraná Basin (Brazil) [J]. Journal of South American Earth Sciences, 2020, 104: 102873. |
29 | Gu H Y, Ma F S, Guo J, et al. Hydrochemistry, multidimensional statistics, and rock mechanics investigations for Sanshandao Gold Mine, China[J]. Arabian Journal of Geosciences, 2017, 10(3): 62. |
30 | Ren R B, Han K C, Zhao P H, et al. Identification of asphalt fingerprints based on ATR‑FTIR spectroscopy and principal component‑linear discriminant analysis[J]. Construction and Building Materials, 2019, 198: 662-668. |
31 | Sun P Y, Bao K W, Li H S, et al. An efficient classification method for fuel and crude oil types based on m/z 256 mass chromatography by COW‑PCA‑LDA[J]. Fuel, 2018, 222: 416- |
423 | |
32 | 施龙青,王晓丽,邱梅,等.利用微量元素Fisher法识别灰岩突水水源[J].中国科技论文,2020,15(5):491-496. |
Shi Longqing, Wang Xiaoli, Qiu Mei, et al. Recognition of limestone water inrush source by Fisher method of trace elements[J]. China Sciencepaper, 2020, 15(5): 491-496. | |
33 | 王伟,康胜松,高峰,等.基于模糊C均值聚类与Bayes判别的致密油储层分类评价[J].特种油气藏,2020,27(5):118-124. |
Wang Wei, Kang Shengsong, Gao Feng, et al. Classification and evaluation of tight oil reservoirs based on fuzzy C‑Means Clustering and Bayes discrimination[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 118-124. | |
34 | 曹怀仁,胡建芳,彭平安,等.松辽盆地青山口组二段下部湖泊水体环境变化[J].地学前缘,2017,24(1):205-215. |
Cao Huairen, Hu Jianfang, Peng Pingan, et al. The variation of paleo-lake environment in the Lower Member 2 of Qingshankou Formation in the Songliao Basin[J]. Earth Science Frontiers, 2017, 24(1): 205-215. | |
35 | 陈治军,张春明,贺永红,等.银额盆地古生界过成熟烃源岩特征及其地球化学意义[J].石油与天然气地质,2022,43(3):682-695. |
Chen Zhijun, Zhang Chunming, He Yonghong, et al. Characteristics and geochemical indication of over‑mature source rocks in the Paleozoic, Yingen‑Ejinaqi Basin[J]. Oil & Gas Geology, 2022, 43(3): 682-695. | |
36 | 冯伟平,王飞宇,王宗秀,等.乌兰花凹陷原油特征及成因[J].地质力学学报,2020,26(6):932-940. |
Feng Weiping, Wang Feiyu, Wang Zongxiu, et al. Characteristics and origin of crude oils in the Wulanhua sag[J]. Journal of Geomechanics, 2020, 26(6): 932-940. | |
37 | Peters K, Walters C, Moldowan J. The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history[M]. Cambridge, UK: Cambridge University Press, 2005:76-83. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 娄瑞, 孙永河, 张中巧. 渤海湾盆地渤南低凸起西段低角度正断层分段生长特征及其油气地质意义[J]. 石油与天然气地质, 2024, 45(3): 710-721. |
[4] | 韩载华, 刘华, 赵兰全, 刘景东, 尹丽娟, 李磊. 渤海湾盆地临南洼陷古近系沙河街组源-储组合类型与致密(低渗)砂岩油差异富集模式[J]. 石油与天然气地质, 2024, 45(3): 722-738. |
[5] | 邵长印, 宋璠, 张世奇, 王秋月. 渤海湾盆地黄河口凹陷SC7区块古近系东营组二段下亚段滩坝储集体构型特征[J]. 石油与天然气地质, 2024, 45(2): 486-501. |
[6] | 雷文智, 陈冬霞, 王永诗, 巩建强, 邱贻博, 王翘楚, 成铭, 蔡晨阳. 渤海湾盆地济阳坳陷东部深层砂砾岩多类型油气藏成藏机理及模式[J]. 石油与天然气地质, 2024, 45(1): 113-129. |
[7] | 张宏国, 杨海风, 宿雯, 徐春强, 黄志, 程燕君. 源外层系油气运聚关键环节研究与评价方法[J]. 石油与天然气地质, 2024, 45(1): 281-292. |
[8] | 杨小艺, 刘成林, 王飞龙, 李国雄, 冯德浩, 杨韬政, 何志斌, 苏加佳. 渤海湾盆地渤中凹陷西南洼古近系东营组超压分布特征及成因[J]. 石油与天然气地质, 2024, 45(1): 96-112. |
[9] | 刘惠民, 李政, 包友书, 张守春, 王伟庆, 吴连波, 王勇, 朱日房, 方正伟, 张顺, 刘鹏, 王敏. 渤海湾盆地济阳坳陷高产页岩油井BYP5页岩地质特征[J]. 石油与天然气地质, 2023, 44(6): 1405-1417. |
[10] | 王永诗, 巩建强, 陈冬霞, 邱贻博, 茆书巍, 雷文智, 杨怀宇, 王翘楚. 渤海湾盆地东营凹陷盐家地区深层砂砾岩油气藏相态演化及成藏过程[J]. 石油与天然气地质, 2023, 44(5): 1159-1172. |
[11] | 李军亮, 王鑫, 王伟庆, 李博, 曾溅辉, 贾昆昆, 乔俊程, 王康亭. 致密砂岩砂-泥结构发育特征及其对储集空间的控制作用[J]. 石油与天然气地质, 2023, 44(5): 1173-1187. |
[12] | 赵淑娟, 李三忠, 牛成民, 张江涛, 张震, 戴黎明, 杨宇, 李金月. 渤海湾盆地旅大隆起区多期叠加构造及其对潜山的控制作用[J]. 石油与天然气地质, 2023, 44(5): 1188-1202. |
[13] | 刘佳庚, 王艳忠, 操应长, 王淑萍, 李雪哲, 王铸坤. 渤海湾盆地东营凹陷民丰洼陷陡坡带深层-超深层碎屑岩优质储层控制因素[J]. 石油与天然气地质, 2023, 44(5): 1203-1217. |
[14] | 何春波, 张亚雄, 于英华, 袁红旗. 断裂诱发砂体输导油气变径部位预测方法及其应用[J]. 石油与天然气地质, 2023, 44(5): 1300-1307. |
[15] | 王鑫, 曾溅辉, 贾昆昆, 王伟庆, 李博, 安丛, 赵文. 成岩作用控制下低渗透砂岩润湿性演化过程及机制[J]. 石油与天然气地质, 2023, 44(5): 1308-1320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||