石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (5): 1115-1126.doi: 10.11743/ogg20220509
祝海华1(), 陈琳1, 曹正林2, 王明磊3, 洪海涛2, 李育聪2, 张芮2, 张少敏2, 朱光仪1, 曾旭3, 杨巍1
收稿日期:
2022-04-17
修回日期:
2022-07-20
出版日期:
2022-10-01
发布日期:
2022-09-02
第一作者简介:
祝海华(1987—),男,副教授、硕士生导师,油气储层评价。E?mail: 基金项目:
Haihua Zhu1(), Lin Chen1, Zhenglin Cao2, Minglei Wang3, Haitao Hong2, Yucong Li2, Rui Zhang2, Shaomin Zhang2, Guangyi Zhu1, Xu Zeng3, Wei Yang1
Received:
2022-04-17
Revised:
2022-07-20
Online:
2022-10-01
Published:
2022-09-02
摘要:
为研究川中地区侏罗系自流井组大安寨段页岩油储层储集空间特征及控制因素,利用电镜、显微荧光、物性分析、氮气吸附、有机碳及热解等测试手段,开展页岩层系的储集空间、物性、含油性分析,并讨论了微观特征的控制因素。结果表明:①大安寨段页岩油储层储集空间包括微裂缝和孔隙,微裂缝主要为页理缝和介壳方解石解理缝,孔隙以粘土孔隙为主,其次为介壳方解石晶间孔、自生石英晶间孔,少量有机质孔、黄铁矿晶间孔。②大安寨段页岩油储层具有孔径-孔隙度负相关特征,即页岩孔隙度高(平均5.69 %),粘土孔隙是主要孔隙类型,孔径小,孔隙与页理缝组成水平孔缝系统;介壳灰岩孔隙度低(平均3.27 %),介壳方解石、石英晶间孔比例增加,孔径大,孔隙与解理缝形成网状的孔缝系统。③油相微观赋存具有较强非均质性,表现为富有机质页岩段含油性(热解游离烃含量S1、油饱和度指数OSI)好,但油相分散分布于粘土微小孔隙中,显微荧光弱,流动性差;孔径大的介壳方解石/石英晶间孔隙、解理缝以及页理缝中烃类更富集,显微荧光强。④微裂缝对烃类的微观富集至关重要。油气生成之后优先进入页理缝,并在页理缝附近的介壳方解石孔缝系统中富集,而距离页理缝较远的介壳方解石孔隙含油性变差,建议以孔径和微裂缝发育程度作为大安寨段页岩油有利层段优选的关键参数。
中图分类号:
表1
川中地区大安寨段储层储集空间分类"
类 | 亚类 | 产状与形态 | 成因机理 | 赋存岩类 | 尺寸 | 发育 频率 |
---|---|---|---|---|---|---|
裂缝 | 页理缝 | 近水平连续状 | 层状矿物水平排列 | 页岩、介壳质页岩、泥质介壳灰岩均可出现 | 缝宽小于1 μm,长度为厘米- 米级 | 中 |
介壳壳缘缝 | 沿介壳边缘分布,形态受 壳体形态控制 | 介壳边缘与基质 接触面错动 | 含介壳的相关岩类,如介壳灰岩、介壳质泥页岩、含介壳泥岩 | 缝宽多小于1 μm,长度从微米到毫米级均有,视介壳大小而定 | 高 | |
介壳解理缝 | 受方解石解理控制,边界 平直规则 | 方解石解理受力破裂 | 含介壳相关岩类,且介壳重结晶 | 缝宽以小于1 μm为主,从纳米级到微米级均有 | 高 | |
解理溶蚀 扩大缝 | 走向受原生解理控制,边界 不规则 | 不同成因微裂缝溶蚀 | 解理缝、破碎微裂缝溶蚀形成,发育岩类与部位与其相似 | 缝宽以1~10 μm为主,长度以微米级为主 | 中 | |
碎屑粒缘缝 | 碎屑颗粒边缘孔隙, 多弯曲片状 | 碎屑颗粒与基质 接触面错动 | 含粉砂页岩、粉砂质页岩 | 缝宽以小于1 μm为主,长度从纳米级到微米级均有 | 高 | |
水平缝 | 近水平连续状 | 早期水平缝被方解石完全充填 | 页岩、介壳质页岩、 泥质介壳灰岩 | 缝宽大,1 mm到数厘米,长度为厘米-分米级 | 高 | |
压溶缝 | 不规则状 | 方解石压溶作用 | 介壳灰岩 | 缝不规则,缝宽0.1~2.0 mm | 高 | |
无机 孔隙 | 介壳方解石 晶间孔 | 重结晶介壳,分散呈带状, 边缘平直多边形 | 介壳玻纤状方解石重结晶形成 | 含介壳的相关岩类且 介壳重结晶 | 0.05~20.00 μm | 中 |
介壳方解石 晶间溶孔 | 孤立状孔隙,边缘较圆滑, 与介壳方解石晶间孔共生 | 介壳玻纤状方解石重结晶过程中局部溶蚀 | 含介壳的相关岩类且 介壳重结晶 | 0.02~5.00 μm | 中 | |
自生方解石 晶间孔 | 连通好,边界平直 | 介壳间自生方解石晶体沉淀过程中形成 | 泥晶方解石构成晶间孔 | 小于600 nm | 低 | |
自生石英 晶间孔 | 自生石英晶体间孔隙, 多边形状 | 自生石英交代介壳过程中形成 | 含介壳的相关岩类且 介壳被硅质交代 | 0.05~20.00 μm | 中 | |
粘土晶间孔 | 粘土矿物之间,呈片状或 不规则状,长宽比大 | 片状粘土矿物晶间孔隙压实残余 | 泥页岩类型均可见 | 5~550 nm | 高 | |
黄铁矿晶间孔 | 自生黄铁矿结核晶体间 | 自生黄铁矿沉淀过程中形成 | 介壳质泥页岩、含介壳泥岩 | 0.05~5.00 μm | 中 | |
有机 孔隙 | 沥青质有机孔 | 无定形沥青质体中孔隙, 呈不规则或圆形 | 轻烃逸散之后形成 | 富有机质页岩 | 5~300 nm | 低 |
图3
川中地区R1和L1井大安寨段页岩油储层典型裂缝照片a.页理缝和方解石充填水平缝,R1井,埋深2 464.90 ~ 2 464.96 m,岩心; b.页理缝充填沥青,R1井,埋深2 464.90 m,单偏光; c.页理缝和方解石充填水平缝,L1井,埋深2 474.10 m,岩心; d.水平缝充填亮晶方解石,方解石间见沥青,L1井,埋深3 478.05 m,单偏光; e—g.介壳方解石内2组垂直解理缝,形成网状微裂缝,R1井,埋深2 449.94 m,f,g为e的局部放大; h.溶蚀扩大的解理缝,R1井,埋深2 464.40 m; i.碎屑颗粒边缘缝,有机质充填,R1井,埋深2 464.40 m,SEM; j.介壳边缘缝(红箭头)以及介壳解理缝(黄箭头),R1井,埋深2 461.05 m,SEM; k.压溶缝合线,介壳亮晶方解石,R1井,埋深2 453.13 m,SEM"
1 | 姜在兴,张文昭,梁超,等.页岩油储层基本特征及评价要素[J].石油学报,2014,35(1):184-196. |
Jiang Zaixing, Zhang Wenzhao, Liang Chao, et al. Characteristics and evaluation elements of shale oil reservoir[J].Acta Petrolei Sinica,2014,35(1):184-196. | |
2 | 赵文智,胡素云,侯连华,等.中国陆相页岩油类型、资源潜力及与致密油的边界[J].石油勘探与开发,2020,47(1):1-10. |
Zhao Wenzhi, Hu Suyun, Hou Lianhua,et al.Types and resource potential of continental shale oil in China and its boundary with tight oil[J].Petroleum Exploration and Development,2020,47(1):1-10. | |
3 | 邹才能,朱如凯,白斌,等.致密油与页岩油内涵,特征,潜力及挑战[J].矿物岩石地球化学通报,2015,34(1):3-17. |
Zou Caineng, Zhu Rukai, Bai Bin,et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J].Bulletin of Mineralogy, Petrology and Geochemistry,2015,34(1):3-17. | |
4 | 周尚文,薛华庆,郭伟.川中侏罗系致密油储层可动流体实验[J].辽宁工程技术大学学报:自然科学版,2014,33(6):768-772. |
Zhou Shangwen, Xue Huaqing, Guo Wei. Experimental of movable fluid of tight oil reservoir in Jurassic tight oil reservoirs in central Sichuan Basin[J].Journal of Liaoning Technical University(Natural Science),2014,33(6):768-772. | |
5 | 贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-350. |
Jia Chengzao, Zou Caineng, Li Jianzhong, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012,33(3):343-350. | |
6 | 王剑, 周路, 靳军,等.准噶尔盆地吉木萨尔凹陷芦草沟组页岩油储层孔隙结构,烃类赋存及其与可动性关系[J].石油实验地质,2021, 43(6):941-948. |
Wang Jian, Zhou Lu, Jin Jun,et al. Pore structure,hydrocarbon occurrence and their relationship with shale oil production in Lucaogou Formation of Jimsar Sag,Junggar Basin[J].Petroleum Geology & Experiment,2021, 43(6):941-948. | |
7 | 孙兵华,张廷山 .鄂尔多斯盆地张家湾地区长7页岩油气储集特征及其影响因素[J].天然气地球科学,2019, 30(2): 274-284. |
Sun Binghua, Zhang Tingshan. Reservoir characteristics and its influence of Chang 7 lacustrine shale, Zhang jia wan area,ordos Basin[J ]. Natural Gas Geoscience,2019,30(2):274-284. | |
8 | 霍秋立, 曾花森, 付丽, 等.松辽盆地北部青一段泥页岩储集特征及孔隙演化[J].大庆石油地质与开发,2019,38(1):1-8. |
Huo Qiuli, Zeng Huasen, Fu Li,et al. Accumulating characteristics and pore evolution for Member Qing‑1 mud shale in North Songliao Basin[J].Petroleum Geology and Oilfield Development in Daqing,2019,38(1): 1-8. | |
9 | 杨智,唐振兴,李国会,等.陆相页岩层系石油富集区带优选,甜点区段评价与关键技术应用[J].地质学报,2021,95(8):2257-2271. |
Yang Zhi, Tang Zhenxing, Li Guohui,et al. Optimization of enrichmentplays,evaluation of sweet area & section and application of key technologies for the continental shale strata oil in China[J].Acta Geologica Sinica,2021,95(8):2257-2271. | |
10 | 杨跃明,黄东,杨光,等.四川盆地侏罗系大安寨段湖相页岩油气形成地质条件及勘探方向[J].天然气勘探与开发,2019,42(2):1-12. |
Yang Yueming, Huang Dong, Yang Guang,et al. Geological conditions to form lacustrine facies shale oil and gas of Jurassic Daanzhai Member in Sichuan Basin and exploration directions[J].Natural Gas Exploration and Development,2019,42(2):1-12. | |
11 | 蒋裕强,漆麟,邓海波,等.四川盆地侏罗系油气成藏条件及勘探潜力[J].天然气工业,2010,3(3):22-26. |
Jiang Yuqiang, Qi lin, Deng Haibo,et al. Hydrocarbon accumulation conditions and exploration potentials of the Jurassic reservoirs in the Sichuan Basin[J].Natural Gas Industry,2010,3(3):22-26. | |
12 | 杜敏,陈盛吉,万茂霞,等.四川盆地侏罗系源岩分布及地化特征研究[J].天然气勘探与开发,2005,28(2):15-17. |
Du Min, Chen Shengji, Wan Maoxia,et al. Study on distribution and geo‑chemical features of jurassic source rocks in Sichuan Basin[J].Natural Gas Exploration and Development,2005,28(2):15-17. | |
13 | 李军,王世谦.四川盆地平昌-阆中地区侏罗系油气成藏主控因素与勘探对策[J].天然气工业,2010,30(3):16-21. |
Li Jun, Wang Shiqian. The main factors controlling hydrocarbon accumulation in the Jurassic of Pingchang‑Langzhong area in the Sichuan Basin and its exploration strategies[J]. Natural Gas Industry,2010,30(3):16-21. | |
14 | 王世谦,胡素云,董大忠.川东侏罗系—四川盆地亟待重视的一个致密油气新领域[J].天然气工业,2012,32(12):22-29. |
Wang Shiqian, Hu Suyun, Dong Dazhong. Jurassic tight oil & gas resources in East Sichuan Basin: A new exploration target[J]. Tianranqi Gongye, 2012,32(12):22-29. | |
15 | 柳妮,林良彪,陈洪德,等.四川盆地川西北地区侏罗系自流井组大安寨段页岩气聚集条件[J].中国地质,2014,41(5):1664-1672. |
Liu Ni, Lin Liangbiao, Chen Hongde,et al. Shale gas accumulation conditions in Daanzhai Member of lower Jurassic Ziliujing Foramtion in the northwest of Sichuan Basin[J].Geology in China,2014,41(5):1664-1672. | |
16 | 冯荣昌,吴因业,陶士振,等.四川盆地下侏罗统大安寨段沉积微相特征及对储层的控制[J].石油实验地质, 2015,37(3):320-327. |
Feng Rongchang, Wu Yinye, Tao Shizhen,et al. Sedimentary microfacies characteristics and their control on reservoirs in Daanzhai Member, Lower Jurassic, Sichuan Basin[J].Petroleum Geology & Experiment,2015,37(3):320-327. | |
17 | 杜江民,张小莉,张帆,等.川中龙岗地区下侏罗统大安寨段沉积相分析及有利储集层预测[J].古地理学报,2015,17(4):493-502. |
Du Jiangmin, Zhang Xiaoli, Zhang Fan,et al. Sedimentary facies and reservoir prediction of the Lower Jurassic Da’anzhai Member, Longgang area, central Sichuan Basin[J].Journal of Palaeogeography,2015,17(4):493-502. | |
18 | 魏祥峰,刘若冰,张廷山,梁兴.页岩气储层微观孔隙结构特征及发育控制因素-以川南—黔北XX地区龙马溪组为例[J].天然气地球科学,2013,24(5):1048-1059. |
Wei Xiangfeng, Liu Ruobing, Zhang Tingshan,et al. Micro‑pores structure characteristics and development control factors of shale gas reservoir: A case of Longmaxi Formation in XX area of southern Sichuan and northern Guizhou(Article)[J]. Natural Gas Geoscience, 2013,24(5):1048-1059. | |
19 | 赵佩,李贤庆,田兴旺,等.川南地区龙马溪组页岩气储层微孔隙结构特征[J].天然气地球科学,2014,25(6):947-956. |
Zhao Pei, Li Xianqing, Tian Xingwang, et al. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the Southern Sichuan Basin(Article)[J]. Natural Gas Geoscience, 2014,25(6):947-956. | |
20 | 张慧,魏小燕,杨庆龙,等.海相页岩储层矿物质孔隙的形貌-成因类型[J].煤田地质与勘探,2018,46(4):72-78. |
Zhang Hui, Wei Xiaoyan, Yang Qinglong,et al. The morphology⁃origin types of mineral pores in the marine shale reservoir[J].Coal Geology & Exploration,2018, 46(4):72-78. | |
21 | Jarvie D M. Shale resource systems for oil and gas: Part2‑shale⁃oil resource systems[J]. Shale Reservoirs‑Giant Resources for the 21st century, AAPG Memoir,2012:89-119. |
22 | Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix‑related mudrock pores[J]. AAPG Bulletin, 2012, 96(6):1071-1098. |
23 | Zhu H, Zhang T, Liang X, et al. Insight into the pore structure of Wufeng‑Longmaxi black shales in the south Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2018, 171(12):1279-1291. |
24 | 孙莎莎,董大忠,李育聪,等.四川盆地侏罗系自流井组大安寨段陆相页岩油气地质特征及成藏控制因素[J].石油与天然气地质,2021,42(1):124-135. |
Sun Shasha, Dong Dazhong, Li Yucong,et al. Geological characteristics and controlling factors of hydrocarbon accumulation in terrestrial shale in the Da’anzhai Member of the Jurassic Ziliujing Formation, Sichuan Basin(Article)[J]. Oil and Gas Geology, 2021,42(1):124-135. | |
25 | Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix‑related mudrock pores[J]. AAPG Bulletin, 2012,96(6), 1071-1098. |
26 | Löhr S C, Baruch E T, Hall P A, et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015,87(10): 119-132. |
27 | 王茂林,程鹏,田辉,肖贤明.页岩油储层评价指标体系[J].地球化学,2017,46(2):179-190. |
Wang Maolin, Cheng Peng, Tian Hui,et al. Evaluation index system of shale oil reservoirs[J].Geochimica,2017,46(2):179-190. | |
28 | Macquaker J H, Taylor K G, Keller M, et al. Compositional controls on early diagenetic pathways in fine‑grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones Diagenesis of Organic‑Rich Mudstones[J]. AAPG bulletin, 2014, 98(3): 587-603. |
29 | Mark J O, Richard E S. Mechanisms for generating overpressure in sedimentary basins[J]. AAPG Bulletin,1997,81(6):1023-1041. |
30 | 赵靖舟,李军,徐则阳.沉积盆地超压成因研究进展[J].石油学报,2017,38(9):973-998. |
Zhao Jingzhou, Li Jun, Xu Zeyang. Advances in the origin of overpressures in sedimentary basins[J]. Petroleum Research, 2017,38(9):973-998. | |
31 | 王敏,陈祥,严永新,等.南襄盆地泌阳凹陷陆相页岩油地质特征与评价[J].古地理学报,2013,15(5):663-671. |
Wang Min, Chen Xiang, Yan Yongxin,et al. Geological characteristics and evaluation of continental shale oil in Biyang sag of Nanxiang Basin[J].Journal of Palaeogeography,2013, 15(5):663-671. | |
32 | 薛海涛,田善思,王伟明,等.页岩油资源评价关键参数—含油率的校正[J].石油与天然气地质,2016,37(1):15-22. |
Xue Haitao, Tian Sishan, Wang Weiming,et al. Correction of oil content‑one key parameter in shale oil resource assessment[J].Oil & Gas Geology, 2016,37(1):15-22. | |
33 | 黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1999. |
Huang Yanzhang. Percolation mechanism of low permeability reservoir[M].Beijing: Petroleum industry press,1999. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[5] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[6] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[7] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[8] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[9] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[10] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[11] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[12] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[13] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[14] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
[15] | 米立军, 徐建永, 李威. 渤海海域页岩油资源潜力[J]. 石油与天然气地质, 2023, 44(6): 1366-1377. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||