石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (5): 1259-1274.doi: 10.11743/ogg20240505

• 油气地质 • 上一篇    下一篇

塔里木盆地兰尕与和田河断裂带变形特征及成藏演化模式

马海陇1,2,3(), 蒋林1,2, 丁文龙3,4,5(), 韩鹏远3, 王震1,2, 张长建1,2, 文欢1,2, 丁立明1,2, 李杰1,2   

  1. 1.中国石化 西北油田分公司,新疆 乌鲁木齐 830001
    2.缝洞型油藏提高采收率重点实验室,新疆 乌鲁木齐 830001
    3.中国地质大学(北京) 能源学院,北京 100083
    4.中国地质大学(北京) 海相储层演化与油气富集机理教育部重点实验室,北京 100083
    5.中国地质大学(北京) 页岩气资源战略评价国土资源部重点实验室,北京 100083
  • 收稿日期:2024-04-06 修回日期:2024-09-05 出版日期:2024-10-30 发布日期:2024-11-06
  • 通讯作者: 丁文龙 E-mail:297048455@qq.com;dingwenlong2006@126.com
  • 第一作者简介:马海陇(1985—),男,硕士研究生、副研究员,石油构造解析。E-mail:297048455@qq.com
  • 基金项目:
    国家自然科学基金项目(42372171)

Deformation characteristics and hydrocarbon accumulation models of the Lan’ga and Hotan River fault zones in the Tarim Basin

Hailong MA1,2,3(), Lin JIANG1,2, Wenlong DING3,4,5(), Pengyuan HAN3, Zhen WANG1,2, Changjian ZHANG1,2, Huan WEN1,2, Liming DING1,2, Jie LI1,2   

  1. 1.Northwest Oil Field Company,SINOPEC,Urumqi,Xinjiang 830001,China
    2.Key Laboratory for Enhanced Oil Recovery for Fractured-Vuggy Reservoirs,SINOPEC,Urumqi,Xinjiang 830001,China
    3.School of Energy Resources,China University of Geosciences (Beijing),Beijing 100083,China
    4.Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism (Ministry of Education),China University of Geosciences (Beijing),Beijing 100083,China
    5.Key Laboratory of Shale Gas Resource Strategic Evaluation (Ministry of Land and Resources),China University of Geosciences (Beijing),Beijing 100083,China
  • Received:2024-04-06 Revised:2024-09-05 Online:2024-10-30 Published:2024-11-06
  • Contact: Wenlong DING E-mail:297048455@qq.com;dingwenlong2006@126.com

摘要:

塔里木盆地中部发育北北东向—近南北向“半走滑-半逆冲”的“Y”字形逆冲滑脱断裂,其构造样式与邻区断裂差异较大,两侧断裂体系也不同,目前对其形成机制和构造演化特征的认识尚不清楚。通过对和田河与兰尕断裂带的构造解析,研究其形成机制与演化特征;通过与塔河油田兰尕断裂带油气成藏特征对比,分析和田河断裂带油气运移聚集特征。研究表明:兰尕及和田河半走滑-半逆冲的“Y”字型逆冲滑脱断裂带形成于加里东晚期,向下收敛为走滑断裂,向上逆冲至志留纪地层内,形成断背斜。区域地应力是这2条断裂带形成的主要原因。早奥陶世末,受西南、东南和北部 3 面应力作用,塔北隆起形成大规模北北东向和北北西向走滑断裂,巴楚隆起形成北北东向走滑断裂。加里东运动晚期,受东昆仑和南天山洋挤压作用,形成向下收敛为走滑断裂、向上逆冲至志留纪地层内的逆冲滑脱断裂,并切割走滑断裂,使逆冲断裂上盘走滑断裂再活动,形成的缝网规模及破碎程度远比下盘及其他区域大。在后期构造运动作用下,逆冲断裂带内走滑断裂继承发育,并错断逆冲断裂。兰尕断裂带内发育两种有利成藏模式:① 主干北北东向走滑断裂横向交切上倾断溶体油气成藏模式;② 油气沿次级北北东向走滑断裂分段富集的断溶体油气成藏模式。海西运动晚期,和田河构造带沿主干断裂充注的油气向次级北北东向走滑断裂控制的缝洞型储层侧向调整,发育断溶体油气藏,油气沿断裂带分段富集。因此,南部背斜区北北东向断溶体为有利勘探目标。

关键词: 断溶体, 构造演化, 成藏模式, 和田河构造带, 兰尕构造带, 巴楚隆起, 塔里木盆地

Abstract:

A Y-shaped thrust-detachment fault striking NNE-near NS directions is developed in the middle of the Tarim Basin, composed of strike-slip for a half and thrust for another half. The fault exhibits significantly different structural style from those in adjacent areas and involve varying fault systems on both sides. However, its formation mechanisms and structural evolution remain unclear. In this study, we investigate the formation mechanisms and evolutionary characteristics with the structural analysis of the Hotan River and Lan’ga fault zones. Comparing the two fault zones in terms of the hydrocarbon accumulation characteristics in the Tahe oilfield, we delve into the characteristics of hydrocarbon migration and accumulation along the Hotan River fault zone. The results indicate that the Lan’ga and Hotan River fault zones are formed during the Late Caledonian, featuring a semi-strike-slip, semi-reverse-thrust Y-shaped thrust-detachment structure. These fault zones converge downwards into strike-slip faults and thrust upwards into the Silurian strata, forming faulted anticlines. Regional in-situ stress is identified as the main cause of the formation of both fault zones. At the end of the Early Ordovician, large-scale NNE- and NNW-trending strike-slip faults were formed in the Tabei Uplift and NNE-trending strike-slip faults were formed in the Bachu Uplift due to stresses from the southwest, southeast, and north. During the Late Caledonian, thrust-detachment faults that converged downward into strike-slip faults and thrust upward to the Silurian strata were formed due to the compression from Eastern Kunlun Orogen and the South Tianshan Ocean, cutting through the strike-slip faults. Thus, those strike-slip faults in their hanging walls got reactivated. Consequently, their hanging walls exhibit more developed fracture networks and a higher degree of fracturing compared to their foot walls and other areas. As a result of late-stage tectonic movements, these strike-slip faults continue to develop in the thrust fault zones, which further dislocate the thrust faults. The Lan’ga fault zone presents two favorable hydrocarbon accumulation models: (1) of the main NNE-trending strike-slip faults transecting the fault-karst reservoir dipping upward, and (2) of the fault-karst reservoirs characterized by segmented hydrocarbon enrichment along the secondary NNE-trending strike-slip faults. Specifically, the hydrocarbon charging along main faults in the Hotan River structural zone underwent lateral adjustment into the secondary NNE-trending strike-slip-controlled reservoirs of fractured-vuggy type during the Late Hercynian, leading to the formation of fault-karst reservoirs, which exhibit segmented hydrocarbon accumulation along the fault zones. The NNE-directed fault-karst reservoirs in the southern anticline zone represent the favorable exploration target.

Key words: fault-karst reservoir, structural evolution, hydrocarbon accumulation model, Hotan River structural zone, Lan’ga structural zone, Bachu Uplift, Tarim Basin

中图分类号: