石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (1): 304-314.doi: 10.11743/ogg20250121
任文希1(), 曾小军1, 王光付2, 郭建春1, 刘彧轩1
收稿日期:
2024-06-21
修回日期:
2024-11-06
出版日期:
2025-02-28
发布日期:
2025-03-03
第一作者简介:
任文希(1990—),男,副研究员,非常规储层岩石物理化学实验和理论研究。E-mail: renwx@swpu.edu.cn。
基金项目:
Wenxi REN1(), Xiaojun ZENG1, Guangfu WANG2, Jianchun GUO1, Yuxuan LIU1
Received:
2024-06-21
Revised:
2024-11-06
Online:
2025-02-28
Published:
2025-03-03
摘要:
针对四川盆地侏罗系陆相页岩气烃类组成多样的特点,建立了干酪根狭缝孔、伊利石狭缝孔和复合孔组成的有机质-黏土矿物复合孔隙体系分子模型。通过分子动力学模拟,研究了湿气在复合孔隙体系中的微观赋存特征及其影响因素。研究发现:①压力较低时,烃类分子会优先占据复合孔中靠近干酪根壁面的孔隙空间;而在高压条件下,分子数增加,较重的烃类分子会优先占据复合孔中靠近干酪根壁面的孔隙空间,使得轻质烃类只能在伊利石壁面处赋存。②在相同压力条件下,孔径越大,孔隙空间越大,可以容纳的烃类分子越多。③高压条件下水分子之间相互作用增强,并在氢键作用下聚集成团,团状水簇可赋存在干酪根表面,或游离于复合孔中,或形成水膜附着于伊利石表面。④有机质-黏土矿物复合孔隙体系中的有机质孔隙、复合孔和黏土矿物孔隙均对烃类赋存有贡献。相对于有机质孔隙,复合孔和黏土矿物孔隙能够容纳更多烃类分子,且以轻质烃类为主,含气性和可动性更好。
中图分类号:
1 | 邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12. |
ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. | |
2 | 郭旭升, 魏志红, 魏祥峰, 等. 四川盆地侏罗系陆相页岩油气富集条件及勘探方向[J]. 石油学报, 2023, 44(1): 14-27. |
GUO Xusheng, WEI Zhihong, WEI Xiangfeng, et al. Enrichment conditions and exploration direction of Jurassic continental shale oil and gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 14-27. | |
3 | 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701. |
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. | |
4 | 魏志红, 刘若冰, 魏祥峰, 等. 四川盆地复兴地区陆相页岩油气勘探评价与认识[J]. 中国石油勘探, 2022, 27(1): 111-119. |
WEI Zhihong, LIU Ruobing, WEI Xiangfeng, et al. Exploration evaluation and recognition of continental shale oil and gas in Fuxing area, Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1): 111-119. | |
5 | 周德华, 孙川翔, 刘忠宝, 等. 川东北地区大安寨段陆相页岩气藏地质特征[J]. 中国石油勘探, 2020, 25(5): 32-42. |
ZHOU Dehua, SUN Chuanxiang, LIU Zhongbao, et al. Geological characteristics of continental shale gas reservoir in the Jurassic Da’anzhai member in the northeastern Sichuan Basin[J]. China Petroleum Exploration, 2020, 25(5): 32-42. | |
6 | 王民, 余昌琦, 费俊胜, 等. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452. |
WANG Min, YU Changqi, FEI Junsheng, et al. Molecular dynamics simulation of shale oil adsorption in kerogen and its implications[J]. Oil & Gas Geology, 2023, 44(6): 1442-1452. | |
7 | 计秉玉, 方吉超, 杨书, 等. 分子采油的概念、方法及展望[J]. 石油与天然气地质, 2023, 44(1): 195-202. |
JI Bingyu, FANG Jichao, YANG Shu, et al. Concept, method and prospect of molecular oil recovery[J]. Oil & Gas Geology, 2023, 44(1): 195-202. | |
8 | WANG Tianyu, TIAN Shouceng, LI Gensheng, et al. Molecular simulation of gas adsorption in shale nanopores: A critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111391. |
9 | WANG Tianyu, TIAN Shouceng, LIU Qingling, et al. Pore structure characterization and its effect on methane adsorption in shale kerogen[J]. Petroleum Science, 2021, 18(2): 565-578. |
10 | 田守嶒, 王天宇, 李根生, 等. 页岩不同类型干酪根内甲烷吸附行为的分子模拟[J]. 天然气工业, 2017, 37(12): 18-25. |
TIAN Shouceng, WANG Tianyu, LI Gensheng, et al. Molecular simulation of methane adsorption behavior in different shale kerogen types[J]. Natural Gas Industry, 2017, 37(12): 18-25. | |
11 | 黄亮, 陈秋桔, 吴建发, 等. 深层页岩伊利石中甲烷吸附特征分子模拟[J]. 中南大学学报(自然科学版), 2022, 53(9): 3522-3531. |
HUANG Liang, CHEN Qiujie, WU Jianfa, et al. Molecular simulation of methane adsorption characteristics in illite nanopores of deep shale reservoirs[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3522-3531. | |
12 | WANG Sen, FENG Qihong, JAVADPOUR F, et al. Multiscale modeling of gas transport in shale matrix: An integrated study of molecular dynamics and rigid-pore-network model[J]. SPE Journal, 2020, 25(3): 1416-1442. |
13 | DE ARAUJO I S, JAGADISAN A, HEIDARI Z. Impacts of kerogen type and thermal maturity on methane and water adsorption isotherms: a molecular simulation approach[J]. Fuel, 2023, 352: 128944. |
14 | JIA Tengfei, ZHANG Songhang, TANG Shuheng, et al. Density and volume of adsorbed methane in key applications for in-situ gas content: Insights from molecular simulation[J]. Chemical Engineering Journal, 2024, 490: 151809. |
15 | TIAN Yuanyuan, YAN Changhui, JIN Zhehui. Characterization of methane excess and absolute adsorption in various clay nanopores from molecular simulation[J]. Scientific Reports, 2017, 7(1): 12040. |
16 | 张益, 张斌, 刘帮华, 等. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
ZHANG Yi, ZHANG Bin, LIU Banghua, et al. Status quo and development trends of research on shale gas adsorption and seepage in shale gas reservoirs[J]. Oil & Gas Geology, 2024, 45(1): 256-280. | |
17 | 丛奇, 陈君青, 卢贵武, 等. 利用分子动力学模拟研究页岩吸附能力的影响因素及微观机理的综述[J]. 中南大学学报(自然科学版), 2022, 53(9): 3474-3489. |
CONG Qi, CHEN Junqing, LU Guiwu, et al. Review on influencing factors and microscopic mechanism of shale adsorption capacity by molecular dynamics simulation[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3474-3489. | |
18 | YANG Feng, XIE Congjiao, NING Zhengfu, et al. High-pressure methane sorption on dry and moisture-equilibrated shales[J]. Energy & Fuels, 2017, 31(1): 482-492. |
19 | REN Wenxi, GUO Jianchun, ZENG Fanhui, et al. Modeling of high-pressure methane adsorption on wet shales[J]. Energy and Fuels, 2019, 33(8): 7043-7051. |
20 | 陈掌星, 冯东, 吴克柳, 等. 页岩气有机质和无机质吸附能力定量表征[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 65-75. |
CHEN Zhangxing, FENG Dong, WU Keliu, et al. Quantificational determination of methane adsorption in organic matter and inorganic matter of shale rocks[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 65-75. | |
21 | 任文希, 周玉, 郭建春, 等. 适用于中深层-深层页岩气的高压吸附模型[J]. 地球科学, 2022, 47(5): 1865-1875. |
REN Wenxi, ZHOU Yu, GUO Jianchun, et al. High-pressure adsorption model for middle-deep and deep shale gas[J]. Earth Science, 2022, 47(5): 1865-1875. | |
22 | CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96(4): 665-677. |
23 | YANG Feng, NING Zhengfu, WANG Qing, et al. Pore structure characteristics of lower Silurian shales in the southern Sichuan Basin, China: Insights to pore development and gas storage mechanism[J]. International Journal of Coal Geology, 2016, 156: 12-24. |
24 | CAI Chuan, CAI Jingong, LIU Huiming, et al. Occurrence of organic matter in argillaceous sediments and rocks and its geological significance: A review[J]. Chemical Geology, 2023, 639: 121737. |
25 | 冯动军. 四川盆地侏罗系大安寨段陆相页岩油气地质特征及勘探方向[J]. 石油实验地质, 2022, 44(2): 219-230. |
FENG Dongjun. Geological characteristics and exploration direction of continental shale gas in Jurassic Daanzhai Member, Sichuan Basin[J]. Petroleum Geology and Experiment, 2022, 44(2): 219-230. | |
26 | UNGERER P, COLLELL J, YIANNOURAKOU M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity[J]. Energy and Fuels, 2015, 29(1): 91-105. |
27 | HUANG Liang, NING Zhengfu, WANG Qing, et al. Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery[J]. Applied Energy, 2018, 210: 28-43. |
28 | WANG Tianyu, TIAN Shouceng, LI Gensheng, et al. Molecular simulation of CO2/CH4 competitive adsorption on shale kerogen for CO2 sequestration and enhanced gas recovery[J]. The Journal of Physical Chemistry C, 2018, 122(30): 17009-17018. |
29 | WU Hong, WEN Long, ZHANG Li, et al. Gas adsorption capacity of type-Ⅱ kerogen at a varying burial depth[J]. Energy & Fuels, 2022, 36(14): 7472-7482. |
30 | YU Kaibin, BOWERS G M, LOGANATHAN N, et al. Diffusion behavior of methane in 3D kerogen models[J]. Energy & Fuels, 2021, 35(20): 16515-16526. |
31 | 黄亮, 冯鑫霓, 杨琴, 等. 深层页岩干酪根纳米孔隙中甲烷微观赋存特征[J]. 石油钻探技术, 2023, 51(5): 112-120. |
HUANG Liang, FENG Xinni, YANG Qin, et al. Microscopic occurrence characteristics of methane in kerogen nanopores of deep shale reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(5): 112-120. | |
32 | DOWNS R T, HALL-WALLACE M. The American Mineralogist crystal structure database[J]. American Mineralogist, 2003, 88(1): 247-250. |
33 | CYGAN R T, LIANG Jianjie, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. |
34 | HAGLER A T, LIFSON S, DAUBER P. Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields[J]. Journal of the American Chemical Society, 1979, 101(18): 5122-5130. |
35 | 郭彤楼, 李宇平, 魏志红. 四川盆地元坝地区自流井组页岩气成藏条件[J]. 天然气地球科学, 2011, 22(1): 1-7. |
GUO Tonglou, LI Yuping, WEI Zhihong. Reservoir-forming conditions of shale gas in Ziliujing Formation of Yuanba area in Sichuan Basin[J]. Natural Gas Geoscience, 2011, 22(1): 1-7. | |
36 | 闫建平, 崔志鹏, 耿斌, 等. 四川盆地龙马溪组与大安寨段泥页岩差异性分析[J]. 岩性油气藏, 2016, 28(4): 16-23. |
YAN Jianping, CUI Zhipeng, GENG Bin, et al. Differences of shale between Longmaxi Formation and Da’anzhai member in Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(4): 16-23. | |
37 | LIU Xinyue, ZHANG Dongxiao. A review of phase behavior simulation of hydrocarbons in confined space: Implications for shale oil and shale gas[J]. Journal of Natural Gas Science and Engineering, 2019, 68: 102901. |
38 | 吴建发, 赵圣贤, 李博, 等. 四川盆地南部地区志留系龙马溪组页岩基质孔隙水赋存规律[J]. 天然气工业, 2023, 43(7): 44-54. |
WU Jianfa, ZHAO Shengxian, LI Bo, et al. Occurrence law of pore water in shale matrix: A case study of the Silurian Longmaxi Formation in southern Sichuan Basin[J]. Natural Gas Industry, 2023, 43(7): 44-54. | |
39 | KIM C, DEVEGOWDA D. Molecular dynamics study of fluid-fluid and solid-fluid interactions in mixed-wet shale pores[J]. Fuel, 2022, 319: 123587. |
[1] | 郭杰, 肖笛, 罗冰, 张本健, 陈骁, 张玺华, 李明隆, 谭秀成. 川东地区中二叠世茅口组台-槽分异演化及常规-非常规天然气勘探有利区新发现[J]. 石油与天然气地质, 2025, 46(1): 192-210. |
[2] | 王馨佩, 刘成林, 蒋立伟, 冯德浩, 邹辰, 刘飞, 李君军, 贺昱搏, 董明祥, 焦鹏飞. 渝西大安地区五峰组-龙马溪组深层页岩微观孔隙结构与含气性控制因素[J]. 石油与天然气地质, 2025, 46(1): 230-245. |
[3] | 吴丰, 梁芸, 唐松, 李昱翰, 田兴旺, 杨辉廷, 李锋. 深层含沥青溶孔-溶洞型碳酸盐岩微观导电特性[J]. 石油与天然气地质, 2025, 46(1): 288-303. |
[4] | 文龙, 明盈, 孙豪飞, 张本健, 陈骁, 陈世达, 李松, 李海琪. 四川盆地二叠系龙潭组深层煤岩气地质特征与勘探潜力[J]. 石油与天然气地质, 2024, 45(6): 1678-1685. |
[5] | 刘景东, 任成刚, 王小娟, 潘珂, 王少华, 庞小婷, 关旭. 川中地区中侏罗统沙溪庙组断层输导有效性定量评价[J]. 石油与天然气地质, 2024, 45(6): 1705-1719. |
[6] | 赵圣贤, 刘勇, 李博, 陈鑫, 刘东晨, 尹美璇, 常莹, 蒋睿. 四川盆地泸州区块五峰组-龙马溪组页岩气储层孔隙连通性特征及模式[J]. 石油与天然气地质, 2024, 45(6): 1720-1735. |
[7] | 彭军, 刘芳兰, 张连进, 郑斌嵩, 唐松, 李顺, 梁新玉. 川中龙女寺地区中二叠统茅口组储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1337-1354. |
[8] | 王威, 刘珠江, 魏富彬, 李飞. 川东北地区二叠系大隆组页岩储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1355-1367. |
[9] | 冯潇飞, 赵晓明, 张喜, 葛家旺, 杨长城, 梁岳立, Bouchakour Massine. 川中地区中侏罗世早期天文驱动下的湖平面波动及沉积物分布规律[J]. 石油与天然气地质, 2024, 45(5): 1368-1382. |
[10] | 张琴, 邱振, 赵群, 董大忠, 刘雯, 孔维亮, 庞正炼, 高万里, 蔡光银, 李永洲, 李星涛, 林文姬. 海-陆过渡相与海相页岩气“甜点段”差异特征与形成机理[J]. 石油与天然气地质, 2024, 45(5): 1400-1416. |
[11] | 李一波, 陈耀旺, 赵金洲, 王志强, 魏兵, Valeriy Kadet. 超临界二氧化碳与页岩相互作用机制[J]. 石油与天然气地质, 2024, 45(4): 1180-1194. |
[12] | 胡宗全, 刘忠宝, 李倩文, 吴舟凡. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
[13] | 叶玥豪, 陈伟, 汪华, 宋金民, 明盈, 戴鑫, 李智武, 孙豪飞, 马小刚, 刘婷婷, 唐辉, 刘树根. 四川盆地上二叠统大隆组页岩储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 979-991. |
[14] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[15] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 38
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||