石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (1): 230-245.doi: 10.11743/ogg20250116
王馨佩1,2(), 刘成林1,2(
), 蒋立伟1,2,3, 冯德浩1,2, 邹辰3, 刘飞3, 李君军3, 贺昱搏1,2, 董明祥1,2, 焦鹏飞4
收稿日期:
2024-07-21
修回日期:
2024-09-18
出版日期:
2025-02-28
发布日期:
2025-03-03
通讯作者:
刘成林
E-mail:15258977986@163.com;liucl@cup.edu.cn
第一作者简介:
王馨佩(2000—),女,硕士研究生,非常规油气地质。E-mail: 15258977986@163.com。
基金项目:
Xinpei WANG1,2(), Chenglin LIU1,2(
), Liwei JIANG1,2,3, Dehao FENG1,2, Chen ZOU3, Fei LIU3, Junjun LI3, Yubo HE1,2, Mingxiang DONG1,2, Pengfei JIAO4
Received:
2024-07-21
Revised:
2024-09-18
Online:
2025-02-28
Published:
2025-03-03
Contact:
Chenglin LIU
E-mail:15258977986@163.com;liucl@cup.edu.cn
摘要:
四川盆地渝西大安地区是五峰组-龙马溪组深层页岩气的勘探新区,具有良好的勘探前景,但页岩储层微观孔隙结构特征及其对含气性的控制作用仍不清楚,制约了页岩气勘探进程。基于扫描电镜、低温气体吸附及核磁共振实验分析测试资料,研究了五峰组-龙马溪组不同岩相深层页岩的孔隙结构特征及其对含气性差异的控制作用。研究结果表明:①大安地区深层页岩主要发育硅质页岩相、混合硅质页岩相、含黏土硅质页岩相和黏土质/硅质混合质页岩相,孔隙类型以有机质孔为主,发育晶间孔、溶蚀孔和黏土矿物层间孔,可见有机质充填缝、黏土矿物层间缝和构造应力缝。②深层页岩孔隙结构主要为介孔(2 ~ 50 nm)和宏孔(>50 nm)。TOC含量增加有利于微孔(<2 nm)和宏孔发育,硅质矿物含量增加促进宏孔发育,黏土矿物含量增加促进介孔发育。③深层页岩含气性与TOC、硅质矿物含量成正相关,宏孔体积增大页岩气含气量增加;高硅质含量的页岩相含气性最好,是深层页岩气富集的有利岩相。④中浅层页岩主要发育微孔和介孔,以吸附气为主。深层页岩主要发育介孔和宏孔,以游离气为主。深层页岩中宏孔的发育有利于游离气的储集,增加了深层页岩的含气量。
中图分类号:
表1
四川盆地渝西大安地区五峰组-龙马溪组深层页岩样品基础参数信息"
样品编号 | 井号 | 深度/m | TOC/% | 孔隙度/ % | 全岩矿物组分含量/ % | 黏土矿物组分相对含量/% | 含气量/(m3/t) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
黏土 | 石英 | 长石 | 方解石 | 白云石 | 黄铁矿 | I/S | I | C | ||||||
DA-1 | DA1 | 4 369.95 | 6.40 | 3.50 | 15.1 | 60.2 | 2.4 | 7.9 | 9.7 | 4.7 | 16 | 78 | 6 | 8.29 |
DA-2 | DA1 | 4 373.45 | 7.50 | 8.71 | 13.1 | 72.5 | 2.1 | 4.0 | 5.4 | 2.9 | — | — | — | 11.68 |
DA-3 | DA101 | 4 358.27 | 3.02 | 5.47 | 44.5 | 30.1 | 7.0 | 8.5 | 6.4 | 3.5 | 26 | 50 | 24 | 2.39 |
DA-4 | DA101 | 4 360.13 | 3.35 | 5.34 | 45.0 | 32.9 | 7.0 | 5.0 | 5.7 | 4.4 | — | — | — | 2.88 |
DA-5 | DA101 | 4 361.48 | 2.31 | 5.16 | 42.8 | 24.9 | 5.6 | 7.0 | 5.6 | 14.1 | — | — | — | 4.19 |
DA-6 | DA101 | 4 362.78 | 2.37 | 4.29 | 35.3 | 34.9 | 11.4 | 6.8 | 7.7 | 3.9 | 34 | 49 | 17 | 5.14 |
DA-7 | DA101 | 4 382.85 | 2.76 | 3.95 | 39.0 | 39.4 | 7.9 | 5.3 | 4.7 | 3.7 | 33 | 50 | 17 | 4.93 |
DA-8 | DA101 | 4 384.92 | 4.13 | 5.07 | 33.8 | 46.7 | 5.1 | 3.8 | 3.8 | 6.8 | — | — | — | 4.53 |
DA-9 | DA101 | 4 386.23 | 3.00 | 4.10 | 34.1 | 47.4 | 6.1 | 3.1 | 4.6 | 4.7 | — | — | — | 4.63 |
DA-10 | DA101 | 4 387.67 | 3.08 | 4.15 | 33.0 | 48.8 | 5.9 | 4.4 | 2.9 | 5.0 | — | — | — | 6.10 |
DA-11 | DA101 | 4 388.69 | 4.69 | 5.47 | 26.6 | 45.2 | 5.2 | 7.7 | 8.0 | 7.3 | — | — | — | 4.74 |
DA-12 | DA101 | 4 389.89 | 4.23 | 2.41 | 31.4 | 50.0 | 4.6 | 4.2 | 4.8 | 5.0 | — | — | — | 4.10 |
DA-13 | DA101 | 4 393.33 | 3.36 | 5.74 | 37.8 | 47.4 | 4.5 | 1.4 | 2.7 | 6.2 | — | — | — | 4.68 |
DA-14 | DA101 | 4 395.50 | 4.86 | 7.12 | 14.0 | 73.2 | 1.4 | 2.4 | 6.2 | 2.8 | 22 | 65 | 13 | 8.54 |
DA-15 | DA101 | 4 397.18 | 5.11 | 6.86 | 17.3 | 46.4 | 4.8 | 11.7 | 10.3 | 9.5 | 29 | 63 | 8 | 8.78 |
DA-16 | DA101 | 4 399.58 | 5.41 | 5.98 | 16.4 | 68.9 | 2.5 | 3.6 | 5.5 | 3.1 | 25 | 61 | 14 | 9.59 |
DA-17 | DA103 | 4 426.79 | 4.76 | 6.20 | 24.6 | 54.5 | 3.0 | 5.9 | 7.1 | 4.9 | 36 | 54 | 10 | 7.50 |
DA-18 | DA103 | 4 430.20 | 5.82 | 5.62 | 19.6 | 49.7 | 4.7 | 8.5 | 13.1 | 4.4 | 33 | 58 | 9 | 8.28 |
图3
四川盆地渝西大安地区五峰组-龙马溪组深层页岩储层孔隙类型发育特征(黏土质/硅质混合质页岩相:a. DA101井,埋深4 360.13 m,扫描电镜照片;b. DA101井,埋深4 360.13 m,扫描电镜照片;c. DA1井,埋深4 359.88 m,扫描电镜照片;d. 同c图,经ImageJ处理的扫描电镜照片,红色部分为提取的层间孔和层间缝。含黏土硅质页岩相:e. DA101井,埋深4 393.33 m,扫描电镜照片;f. DA101井,埋深4 384.92 m,扫描电镜照片;g. DA101井,埋深4 387.67 m,扫描电镜照片;h. 同g图,经ImageJ处理的扫描电镜照片,黄铁矿团簇内红色部分为提取的晶间孔。混合硅质页岩相:i. DA101井,埋深4 397.18 m,扫描电镜照片;j. DA101井,埋深4 397.18 m,扫描电镜照片;k. 埋深4 396.20 m,扫描电镜照片;l. 同k图,经ImageJ处理的扫描电镜照片,浅灰色脆性矿物中红色部分为提取的溶蚀孔。硅质页岩相:m. DA1井,埋深4 373.45 m,扫描电镜照片;n. DA101井,埋深4 395.50 m;o. DA101井,埋深4 395.50 m;p. 同o图,经ImageJ处理的扫描电镜照片,红色部为提取的有机质孔。)"
表2
四川盆地渝西大安地区五峰组-龙马溪组深层页岩微观孔隙发育特征"
页岩相 | 微观孔隙类型 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
有机质孔 | 晶间孔 | 溶蚀孔 | 层间孔 | 微裂缝 | ||||||||||
发育程度 | 孔径/nm | 发育程度 | 孔径/nm | 发育程度 | 孔径/nm | 发育程度 | 孔径/nm | 发育程度 | 长度/μm | |||||
黏土质/硅质混合质页岩相 | + | 5 ~ 400 | + + + | 10 ~ 180 | + | 10 ~ 280 | + + + | 1 ~ 350 | + | 1 ~ 5 | ||||
含黏土硅质页岩相 | + + | 10 ~ 450 | + + | 15 ~ 200 | + + | 20 ~ 300 | + + | 2 ~ 340 | + | 1 ~ 10 | ||||
混合硅质页岩相 | + + + | 10 ~ 500 | + + | 35 ~ 170 | + + | 10 ~ 420 | + + | 2 ~ 320 | + + | 1 ~ 8 | ||||
硅质页岩相 | + + + | 20 ~ 550 | + | 10 ~ 220 | + + + | 5 ~ 500 | + | 4 ~ 360 | + + + | 1 ~ 12 |
表3
四川盆地渝西大安地区五峰组-龙马溪组深层页岩孔隙体积和比表面积"
样品编号 | 页岩相 | 孔隙比表面积/(m2/g) | 孔隙体积/(cm3/g) | 孔隙体积占比/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
DFT | BET | 微孔 | 介孔 | 宏孔 | 总孔 | 微孔 | 介孔 | 宏孔 | ||
DA-1 | S-2 | 16.81 | 26.44 | 0.003 41 | 0.027 20 | 0.021 02 | 0.051 63 | 6.60 | 52.68 | 40.71 |
DA-2 | S-1 | 20.33 | 30.44 | 0.003 98 | 0.028 90 | 0.022 10 | 0.054 99 | 7.24 | 52.56 | 40.20 |
DA-3 | M-4 | 18.51 | 29.03 | 0.003 71 | 0.035 94 | 0.002 68 | 0.042 33 | 8.77 | 84.90 | 6.33 |
DA-4 | M-4 | 20.26 | 31.76 | 0.004 05 | 0.036 98 | 0.002 54 | 0.043 57 | 9.31 | 84.86 | 5.83 |
DA-5 | M-4 | 16.29 | 25.47 | 0.003 22 | 0.034 54 | 0.002 42 | 0.040 19 | 8.00 | 85.96 | 6.03 |
DA-6 | M-4 | 15.49 | 23.19 | 0.003 01 | 0.030 77 | 0.001 89 | 0.035 67 | 8.45 | 86.25 | 5.30 |
DA-7 | M-4 | 16.94 | 25.92 | 0.003 37 | 0.032 52 | 0.002 40 | 0.038 29 | 8.81 | 84.93 | 6.27 |
DA-8 | S-4 | 19.26 | 28.18 | 0.003 60 | 0.033 21 | 0.003 61 | 0.040 42 | 8.91 | 82.16 | 8.93 |
DA-9 | S-4 | 16.88 | 25.48 | 0.003 32 | 0.031 24 | 0.003 52 | 0.038 08 | 8.73 | 82.02 | 9.25 |
DA-10 | S-4 | 17.80 | 26.08 | 0.003 43 | 0.032 49 | 0.002 94 | 0.038 86 | 8.82 | 83.62 | 7.56 |
DA-11 | S-4 | 17.99 | 25.51 | 0.003 73 | 0.028 04 | 0.009 66 | 0.041 44 | 9.01 | 67.67 | 23.32 |
DA-12 | S-4 | 9.45 | 14.43 | 0.004 91 | 0.016 06 | 0.004 90 | 0.025 86 | 18.97 | 62.08 | 18.95 |
DA-13 | S-4 | 17.93 | 27.82 | 0.003 63 | 0.034 79 | 0.003 06 | 0.041 48 | 8.76 | 83.87 | 7.37 |
DA-14 | S-1 | 16.04 | 22.41 | 0.003 08 | 0.020 95 | 0.018 61 | 0.042 64 | 7.22 | 49.13 | 43.65 |
DA-15 | S-2 | 25.15 | 21.19 | 0.004 77 | 0.021 89 | 0.017 65 | 0.044 30 | 10.76 | 49.42 | 39.83 |
DA-16 | S-2 | 16.49 | 25.13 | 0.003 29 | 0.026 51 | 0.011 49 | 0.041 28 | 7.96 | 64.21 | 27.83 |
DA-17 | S-4 | 19.11 | 26.34 | 0.003 97 | 0.025 52 | 0.009 55 | 0.039 03 | 10.16 | 65.37 | 24.47 |
DA-18 | S-2 | 20.59 | 28.69 | 0.004 47 | 0.025 93 | 0.010 93 | 0.041 33 | 10.81 | 62.75 | 26.44 |
1 | 邹才能, 董大忠, 熊伟, 等. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
ZOU Caineng, DONG Dazhong, XIONG Wei, et al. Advances, challenges, and countermeasures in shale gas exploration of underexplored plays, sequences and new types in China[J]. Oil & Gas Geology, 2024, 45(2): 309-326. | |
2 | 王光付, 李凤霞, 王海波, 等. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
WANG Guangfu, LI Fengxia, WANG Haibo, et al. Difficulties and countermeasures for fracturing of various shale gas reservoirs in the Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(6): 1378-1392. | |
3 | 梁兴, 单长安, 王维旭, 等. 昭通国家级页岩气示范区勘探开发进展及前景展望[J]. 天然气工业, 2022, 42(8): 60-77. |
LIANG Xing, SHAN Chang’an, WANG Weixu, et al. Exploration and development in the Zhaotong national shale gas demonstration area: Progress and propect[J]. Natural Gas Industry, 2022, 42(8): 60-77. | |
4 | 王红岩, 周尚文, 赵群, 等. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
WANG Hongyan, ZHOU Shangwen, ZHAO Qun, et al. Enrichment characteristics, exploration and exploitation progress, and prospects of deep shale gas in the southern Sichuan Basin, China[J]. Oil & Gas Geology, 2023, 44(6): 1430-1441. | |
5 | 梁兴, 单长安, 张磊, 等. 中国南方复杂构造区多类型源内成储成藏非常规气勘探开发进展及资源潜力[J]. 石油学报, 2023, 44(12): 2179-2199. |
LIANG Xing, SHAN Chang’an, ZHANG Lei, et al. Exploration and development progresses and resource potentials of multi-type unconventional gas reservoirs characterized by in-source reservoir and accumulation in complex tectonic areas of southern China[J]. Acta Petrolei Sinica, 2023, 44(12): 2179-2199. | |
6 | 梁兴, 单长安, 张磊, 等. 四川盆地渝西地区大安深层页岩气田的勘探发现及成藏条件[J]. 石油学报, 2024, 45(3): 477-499. |
LIANG Xing, SHAN Chang’an, ZHANG Lei, et al. Exploration discovery and accumulation conditions of Da’an deep shale gas field in western Chongqing, Sichuan Basin[J]. Acta Petrolei Sinica, 2024, 45(3): 477-499. | |
7 | 舒红林, 何方雨, 李季林, 等. 四川盆地大安区块五峰组—龙马溪组深层页岩地质特征与勘探有利区[J]. 天然气工业, 2023, 43(6): 30-43. |
SHU Honglin, HE Fangyu, LI Jilin, et al. Geological characteristics and favorable exploration areas of Wufeng Formation-Longmaxi Formation deep shale in the Da’an Block, Sichuan Basin[J]. Natural Gas Industry, 2023, 43(6): 30-43. | |
8 | 姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 2016, 23(2): 126-134. |
JIANG Zhenxue, TANG Xianglu, LI Zhuo, et al. The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan basin[J]. Earth Science Frontiers, 2016, 23(2): 126-134. | |
9 | 焦堃, 姚素平, 吴浩, 等. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报, 2014, 20(1): 151-161. |
JIAO Kun, YAO Suping, WU Hao, et al. Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities, 2014, 20(1): 151-161. | |
10 | CLARKSON C R, SOLANO N, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103: 606-616. |
11 | 杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3): 450-455. |
YANG Feng, NING Zhengfu, KONG Detao, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3): 450-455. | |
12 | 王超, 张柏桥, 舒志国, 等. 四川盆地涪陵地区五峰组-龙马溪组海相页岩岩相类型及储层特征[J]. 石油与天然气地质, 2018, 39(3): 485-497. |
WANG Chao, ZHANG Boqiao, SHU Zhiguo, et al. Lithofacies types and reservoir characteristics of marine shales of the Wufeng Formation-Longmaxi Formation in Fuling area, the Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(3): 485-497. | |
13 | 刘树根, 焦堃, 张金川, 等. 深层页岩气储层孔隙特征研究进展——以四川盆地下古生界海相页岩层系为例[J]. 天然气工业, 2021, 41(1): 29-41. |
LIU Shugen, JIAO Kun, ZHANG Jinchuan, et al. Research progress on the pore characteristics of deep shale gas reservoirs: An example from the Lower Paleozoic marine shale in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 29-41. | |
14 | 吴泽宇, 孙梦迪, 蒋恕, 等. 鄂西地区深层页岩气储层岩相孔隙结构特征差异及其控制因素——以YT1和YT3井五峰—龙马溪组页岩为例[J]. 东北石油大学学报, 2023, 47(1): 15-29. |
WU Zeyu, SUN Mengdi, JIANG Shu, et al. Characteristics and controlling factors of pore structure in different lithofacies of deep shale gas reservoirs: A case study of Wufeng-Longmaxi Formation shales from wells YT1 and YT3 in Western Hubei[J]. Journal of Northeast Petroleum University, 2023, 47(1): 15-29. | |
15 | 边瑞康, 孙川翔, 聂海宽, 等. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
BIAN Ruikang, SUN Chuanxiang, NIE Haikuan, et al. Types, characteristics, and exploration targets of deep shale gas reservoirs in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(6): 1515-1529. | |
16 | 梁峰, 姜巍, 戴赟, 等. 四川盆地威远—资阳地区筇竹寺组页岩气富集规律及勘探开发潜力[J]. 天然气地球科学, 2022, 33(5): 755-763. |
LIANG Feng, JIANG Wei, DAI Yun, et al. Enrichment law and resource potential of shale gas of Qiongzhusi Formation in Weiyuan-Ziyang areas, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(5): 755-763. | |
17 | 张成林, 张鉴, 李武广, 等. 渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J]. 天然气地球科学, 2019, 30(12): 1794-1804. |
ZHANG Chenglin, ZHANG Jian, LI Wuguang, et al. Deep shale reservoir characteristics and exploration potential of Wufeng-Longmaxi Formations in Dazu area, western Chongqing[J]. Natural Gas Geoscience, 2019, 30(12): 1794-1804. | |
18 | 黄梓桑, 王兴志, 杨西燕, 等. 沉积环境对页岩中有机质富集的约束——以蜀南地区五峰组—龙马溪组为例[J]. 沉积学报, 2021, 39(3): 631-644. |
HUANG Zisang, WANG Xingzhi, YANG Xiyan, et al. Constraints of sedimentary environment on organic matter accumulation in shale: A case study of the Wufeng-Longmaxi formations in the southern Sichuan basin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 631-644. | |
19 | THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
20 | WANG Yang, LIU Luofu, CHENG Hongfei. Gas adsorption characterization of pore structure of organic-rich shale: insights into contribution of organic matter to shale pore network[J]. Natural Resources Research, 2021, 30(3): 2377-2395. |
21 | BAI Longhui, LIU Bo, FU Xiaofei, et al. A new method for evaluating the oil mobility based on the relationship between pore structure and state of oil[J]. Geoscience Frontiers, 2023, 14(6): 101684. |
22 | 宋泽章, 阿比德·阿不拉, 吕明阳, 等. 氮气吸附滞后回环定量分析及其在孔隙结构表征中的指示意义——以鄂尔多斯盆地上三叠统延长组7段为例[J]. 石油与天然气地质, 2023, 44(2): 495-509. |
SONG Zezhang, ABULA Abide, Mingyang LYU, et al. Quantitative analysis of nitrogen adsorption hysteresis loop and its indicative significance to pore structure characterization: A case study on the Upper Triassic Chang 7 Member, Ordos Basin[J]. Oil & Gas Geology, 2023, 44(2): 495-509. | |
23 | RAVIKOVITCH P I, NEIMARK A V. Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: Equilibrium, pore blocking, and cavitation[J]. Langmuir, 2002, 18(25): 9830-9837. |
24 | FENG Dehao, LIU Chenglin, FENG Xiaolong, et al. Movable fluid evaluation of tight sandstone reservoirs in lacustrine delta front setting: Occurrence characteristics, multiple control factors, and prediction model[J]. Marine and Petroleum Geology, 2023, 155: 106393. |
25 | 龚小平, 唐洪明, 赵峰, 等. 四川盆地龙马溪组页岩储层孔隙结构的定量表征[J]. 岩性油气藏, 2016, 28(3): 48-57. |
GONG Xiaoping, TANG Hongming, ZHAO Feng, et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(3): 48-57. | |
26 | CAI Guangyin, GU Yifan, JIANG Yuqiang, et al. Pore structure and fluid evaluation of deep organic-rich marine shale: A case study from Wufeng-Longmaxi Formation of southern Sichuan Basin[J]. Applied Sciences, 2023, 13(13): 7827. |
27 | 唐洪明, 刘贤, 陈洋, 等. 不同构造单元页岩孔隙结构差异及其油气地质意义——以四川盆地泸州地区深层页岩为例[J]. 天然气工业, 2024, 44(5): 16-28. |
TANG Hongming, LIU Xian, CHEN Yang, et al. Pore structure difference of shale in different structural units and its petroleum geological implications: A case study on deep shale in the Luzhou area, southern Sichuan Basin[J]. Natural Gas Industry, 2024, 44(5): 16-28. | |
28 | 李勇, 何建华, 邓虎成, 等. 常压页岩储层优势岩相孔隙结构表征及其影响因素——以川东南林滩场五峰组—龙马溪组为例[J]. 天然气地球科学, 2023, 34(7): 1274-1288. |
LI Yong, HE Jianhua, DENG Hucheng, et al. Pore structure characterization and its influencing factors in favorable lithofacies of normal pressure shale reservoirs: Case study of Wufeng-Longmaxi formations in Lintanchang area, Southeast Sichuan Basin[J]. Natural Gas Geoscience, 2023, 34(7): 1274-1288. | |
29 | WANG Yang, ZHU Yanming, LIU Shimin, et al. Methane adsorption measurements and modeling for organic-rich marine shale samples[J]. Fuel, 2016, 172: 301-309. |
30 | 安成, 柳广弟, 孙明亮, 等. 基于氮气吸附实验与分形FHH模型分析页岩孔隙结构特征——以鄂尔多斯盆地华池地区长7段为例[J]. 石油实验地质, 2023, 45(3): 576-586. |
AN Cheng, LIU Guangdi, SUN Mingliang, et al. Analysis of shale pore structure characteristics based on nitrogen adsorption experiment and fractal FHH model: A case study of 7th member of Triassic Yanchang Formation in Huachi area, Ordos Basin[J]. Petroleum Geology and Experiment, 2023, 45(3): 576-586. | |
31 | 陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37(3): 438-444. |
CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3): 438-444. | |
32 | 单玄龙, 邢健, 苏思远, 等. 川南长宁地区下古生界五峰组—龙马溪组一段页岩岩相与含气性特征[J]. 吉林大学学报(地球科学版), 2023, 53(5): 1323-1337. |
SHAN Xuanlong, XING Jian, SU Siyuan, et al. Shale lithofacies and gas-bearing characteristics of the lower Paleozoic Wufeng Formation-Member 1 of Longmaxi Formation in Changning area, Southern Sichuan[J]. Journal of Jilin University(Earth Science Edition), 2023, 53(5): 1323-1337. | |
33 | WANG Qingtao, WANG Taoli, LIU Wenping, et al. Relationships among composition, porosity and permeability of Longmaxi Shale reservoir in the Weiyuan Block, Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 33-47. |
34 | 石砥石, 徐秋晨, 郭睿良, 等. 下扬子地区望江坳陷二叠系富有机质页岩孔隙结构特征与影响因素[J]. 天然气地球科学, 2022, 33(12): 1911-1925. |
SHI Dishi, XU Qiuchen, GUO Ruiliang, et al. Pore structure characteristics and main controlling factors of Permian organic-rich shale in Lower Yangtze Region[J]. Natural Gas Geoscience, 2022, 33(12): 1911-1925. | |
35 | 朱彪, 邹妞妞, 张大权, 等. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158. |
ZHU Biao, ZOU Niuniu, ZHANG Daquan, et al. Characteristics of shale pore structure and its oil and gas geological significance of Lower Cambrian Niutitang Formation in Fenggang area, northern Guizhou[J]. Lithologic Reservoirs, 2024, 36(4): 147-158. | |
36 | 尚福华, 苗科, 朱炎铭, 等. 复杂构造区页岩孔隙结构、吸附特征及其影响因素[J]. 煤炭科学技术, 2023, 51(2): 269-282. |
SHANG Fuhua, MIAO Ke, ZHU Yanming, et al. Pore structure, adsorption capacity and their controlling factors of shale in complex structural area[J]. Coal Science and Technology, 2023, 51(2): 269-282. | |
37 | 王哲, 李贤庆, 周宝刚, 等. 川南地区下古生界页岩气储层微观孔隙结构表征及其对含气性的影响[J]. 煤炭学报, 2016, 41(9): 2287-2297. |
WANG Zhe, LI Xianqing, ZHOU Baogang, et al. Characterization of microscopic pore structure and its influence on gas content of shale gas reservoirs from the Lower Paleozoic in southern Sichuan Basin[J]. Journal of China Coal Society, 2016, 41(9): 2287-2297. | |
38 | 李玉喜, 乔德武, 姜文利, 等. 页岩气含气量和页岩气地质评价综述[J]. 地质通报, 2011, 30(2/3): 308-317. |
LI Yuxi, QIAO Dewu, JIANG Wenli, et al. Gas content of gas-bearing shale and its geological evaluation summary[J]. Geological Bulletin of China, 2011, 30(2/3): 308-317. |
[1] | 郭杰, 肖笛, 罗冰, 张本健, 陈骁, 张玺华, 李明隆, 谭秀成. 川东地区中二叠世茅口组台-槽分异演化及常规-非常规天然气勘探有利区新发现[J]. 石油与天然气地质, 2025, 46(1): 192-210. |
[2] | 吴丰, 梁芸, 唐松, 李昱翰, 田兴旺, 杨辉廷, 李锋. 深层含沥青溶孔-溶洞型碳酸盐岩微观导电特性[J]. 石油与天然气地质, 2025, 46(1): 288-303. |
[3] | 任文希, 曾小军, 王光付, 郭建春, 刘彧轩. 陆相页岩有机质-黏土矿物复合孔隙体系中多组分烃类-水混合物赋存的分子模拟[J]. 石油与天然气地质, 2025, 46(1): 304-314. |
[4] | 文龙, 明盈, 孙豪飞, 张本健, 陈骁, 陈世达, 李松, 李海琪. 四川盆地二叠系龙潭组深层煤岩气地质特征与勘探潜力[J]. 石油与天然气地质, 2024, 45(6): 1678-1685. |
[5] | 刘景东, 任成刚, 王小娟, 潘珂, 王少华, 庞小婷, 关旭. 川中地区中侏罗统沙溪庙组断层输导有效性定量评价[J]. 石油与天然气地质, 2024, 45(6): 1705-1719. |
[6] | 赵圣贤, 刘勇, 李博, 陈鑫, 刘东晨, 尹美璇, 常莹, 蒋睿. 四川盆地泸州区块五峰组-龙马溪组页岩气储层孔隙连通性特征及模式[J]. 石油与天然气地质, 2024, 45(6): 1720-1735. |
[7] | 彭军, 刘芳兰, 张连进, 郑斌嵩, 唐松, 李顺, 梁新玉. 川中龙女寺地区中二叠统茅口组储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1337-1354. |
[8] | 王威, 刘珠江, 魏富彬, 李飞. 川东北地区二叠系大隆组页岩储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1355-1367. |
[9] | 冯潇飞, 赵晓明, 张喜, 葛家旺, 杨长城, 梁岳立, Bouchakour Massine. 川中地区中侏罗世早期天文驱动下的湖平面波动及沉积物分布规律[J]. 石油与天然气地质, 2024, 45(5): 1368-1382. |
[10] | 张琴, 邱振, 赵群, 董大忠, 刘雯, 孔维亮, 庞正炼, 高万里, 蔡光银, 李永洲, 李星涛, 林文姬. 海-陆过渡相与海相页岩气“甜点段”差异特征与形成机理[J]. 石油与天然气地质, 2024, 45(5): 1400-1416. |
[11] | 阮壮, 徐睿, 王杰, 常秋红, 王大华, 王建东, 周广清, 于炳松. 柴达木盆地马海东地区古近系砂岩储层微观孔隙结构特征及微观致密区成因[J]. 石油与天然气地质, 2024, 45(4): 1032-1045. |
[12] | 李一波, 陈耀旺, 赵金洲, 王志强, 魏兵, Valeriy Kadet. 超临界二氧化碳与页岩相互作用机制[J]. 石油与天然气地质, 2024, 45(4): 1180-1194. |
[13] | 胡宗全, 刘忠宝, 李倩文, 吴舟凡. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
[14] | 叶玥豪, 陈伟, 汪华, 宋金民, 明盈, 戴鑫, 李智武, 孙豪飞, 马小刚, 刘婷婷, 唐辉, 刘树根. 四川盆地上二叠统大隆组页岩储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 979-991. |
[15] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 47
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 53
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||