石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (1): 196-206.doi: 10.11743/ogg20220116
桂亚倩1(), 朱光有2, 阮壮1, 曹颖辉2, 沈臻欢1, 常秋红1, 陈郭平1, 于炳松1()
收稿日期:
2020-11-04
修回日期:
2021-11-22
出版日期:
2022-02-01
发布日期:
2022-01-28
通讯作者:
于炳松
E-mail:guiyaqiancugb@gmail.com;yubs@cugb.edu.cn
第一作者简介:
桂亚倩(1996—),女,硕士研究生,储层地质学。E?mail: 基金项目:
Yaqian Gui1(), Guangyou Zhu2, Zhuang Ruan1, Yinghui Cao2, Zhenhuan Shen1, Qiuhong Chang1, Guoping Chen1, Bingsong Yu1()
Received:
2020-11-04
Revised:
2021-11-22
Online:
2022-02-01
Published:
2022-01-28
Contact:
Bingsong Yu
E-mail:guiyaqiancugb@gmail.com;yubs@cugb.edu.cn
摘要:
通过对塔里木盆地塔北隆起英买-牙哈地区14口井以及轮探1井寒武系地层水的化学成分和离子比例系数的分析,以及水文地球化学模拟,明确了研究区塔北隆起寒武系地层水化学特征和成因与演化。结果表明:塔北隆起寒武系地层水是以Na++K+和Cl-为主的高矿化度CaCl2型地层水。地层水中Na++K+和Cl-浓度与矿化度的相关性好,Na++K+,Ca2+,Mg2+,Cl-和SO42-浓度随埋深的增加呈先减小后增大的趋势,与矿化度随埋深的变化趋势一致,由此将地层水划分为越流泄水浓缩带和深部渗滤浓缩带。钠氯系数为0.39~0.55,平均值为0.51;脱硫酸系数为0.07~1.91,平均值为0.35。Phreeqc软件模拟矿物饱和指数得出:白云石的饱和指数为-3.43~1.95,平均值为-0.10,50.91 %的白云石沉淀;石膏的饱和指数为-1.77~0.12,平均值为-0.80,94.64 %的石膏溶解;方解石的饱和指数为-0.88~1.62,平均值为0.55,18.18 %的方解石溶解。研究区塔北隆起方解石的白云石化和石膏溶解导致现今地层水中Ca2+富集,Mg2+亏损。塔北隆起寒武系地层水变质程度小,是由海水经历蒸发浓缩、离子吸附和水-岩相互作用演变形成的。
中图分类号:
1 | Wilson T P, Long D T. Geochemistry and isotope chemistry of Michigan Basin brines: Devonian formations[J]. Applied Geochemistry, 1993, 8(1):81-100. |
2 | Yu H Y, Ma T, Du Y, et al. Genesis of formation water in the northern sedimentary basin of South China Sea: Clues from hydrochemistry and stable isotopes (D, 18O, 37Cl and 81Br)[J]. Journal of Geochemical Exploration, 2019, 196:57-65. |
3 | Hanor J S, Mcintosh J C. Diverse origins and timing of formation of basinal brines in the Gulf of Mexico sedimentary basin[J]. Geofluids, 2007, 7(2):227-237. |
4 | Worden R H, Manning D A C, Bottrell S H. Multiple generations of high salinity formation water in the Triassic Sherwood Sandstone: Wytch Farm oilfield, onshore UK[J]. Applied Geochemistry, 2006, 21(3):455-475. |
5 | Land L S, Macpherson G L. Origin of saline formation waters, Cenozoic Section, Gulf of Mexico sedimentary basin[J]. AAPG Bulletin, 1992, 76(9):1344-1362. |
6 | Zhou X, Li C J, Ju X M, et al. Origin of subsurface brines in the Sichuan Basin[J]. Ground Water, 1997, 35(1):53-58. |
7 | 陈勇,王淼,王鑫涛,等.东营凹陷沙四段地层水化学特征及其指示意义[J].中国石油大学学报(自然科学版),2015,39(4):42-52. |
Chen Yong, Wang Miao, Wang Xintao, et al. Chemical characteri⁃stics and implications of formation water of the Es⁃4 Member in Dongying Sag[J]. Journal of China University of Petroleum (Edition of Natural Science),2015, 39(4):42-52. | |
8 | 李鹏春,刘春晓,张渊,等.塔中奥陶系地层水化学特征及其成因与演化[J].石油与天然气地质,2007,28(6):802-808. |
Li Pengchun, Liu Chunxiao, Zhang Yuan, et al. Geochemical behaviors of the Ordovician formation water in the Tazhong area and its origin and evolution[J]. Oil & Gas Geology, 2007, 28(6):802-808. | |
9 | 杨春龙,谢增业,董才源,等.塔里木盆地英买2地区奥陶系碳酸盐岩地层水化学特征及储层响应[J].中国海上油气,2018,30(5):55-62. |
Yang Chunlong, Xie Zengye, Dong Caiyuan, et al. Chemical characteristics and reservoir response of Ordovician carbonate formation water in YM2 area, Tarim basin[J]. China Offshore Oil and Gas, 2018, 30(5):55-62. | |
10 | 王祥,韩剑发,于红枫,等.塔中北斜坡奥陶系鹰山组地层水特征与油气保存条件[J].石油天然气学报,2012,34(5):25-29. |
Wang Xiang, Han Jianfa, Yu Hongfeng, et al. Characteristics of formation water of Ordovician Yingshan Formation in the northern slope of Tazhong Palaeouplift and condition of hydrocarbon preservation[J]. Journal of Oil and Gas Technology, 2012, 34(5):25-29. | |
11 | 刘大永,陈键,彭平安,等.轮南地区碳酸盐岩油气藏类型对地层水特征的控制作用[J].石油学报,2012,33(3):367-371. |
Liu Dayong, Chen Jian, Peng Ping’an, et al. The control of reservoir types in Lunnan oilfield on characters of formation water[J]. Acta Petrolei Sinica, 2012, 33(3):367-371. | |
12 | 张天付,黄理力,倪新锋,等.塔里木盆地柯坪地区下寒武统吾松格尔组岩性组合及其成因和勘探意义——亚洲第一深井轮探1井突破的启示[J].石油与天然气地质,2020,41(5):928-940. |
Zhang Tianfu, Huang Lili, Ni Xinfeng, et al. Lithological combination,genesis and exploration significance of the Lower Cambrian Wusonggeer Formation of Kalpin area in Tarim Basin: Insight through the deepest Asian onshore well⁃Well Luntan 1[J]. Oil & Gas Geology, 2020, 41(5):928-940. | |
13 | Jiang L, Cai C T, Worden R H, et al. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north⁃west China[J]. Sedimentology, 2016, 63(7):2130-2157. |
14 | Zhu G Y, Zhang Z Y, Zhou X X, et al. The complexity, secondary geochemical process, genetic. mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth⁃Science Reviews, 2019, 198:1-28. |
15 | 金之钧,王清晨.中国典型叠合盆地与油气成藏研究新进展——以塔里木盆地为例[J].中国科学(D辑:地球科学),2004,34(S1):1-12. |
Jin Zhijun, Wang Qingchen. New progress on typical superposed basins and hydrocarbon accumulation in China: An example of Tarim Basin[J]. Science in China( Series D: Earth Sciences), 2004, 34(S1):1-12. | |
16 | 张德民,鲍志东,郝雁,等.塔里木盆地牙哈-英买力寒武系潜山区优质储层形成模式[J].天然气地球科学,2016,27(10):1797-1807. |
Zhang Demin, Bao Zhidong, Hao Yan, et al. Formation model of high⁃quality reservoirs within Cambrian buried hill in Yaha⁃Yingmaili area, Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(10):1797-1807. | |
17 | 刘正文,党青宁,董瑞霞,等.塔里木盆地寒武系白云岩地震处理技术应用及效果——以塔北英买32地区中下寒武统为例[J].天然气地球科学,2015,26(7):1334-1343. |
Liu Zhengwen, Dang Qingning, Dong Ruixia, et al. Seismic ima⁃ging technique and application of cambrian dolomite rock in Tarim Basin: A case of middle⁃lower cambrian layers of Yingmai 32 area[J]. Natural Gas Geoscience, 2015, 26(7):1334-1343. | |
18 | 王珊,曹颖辉,杜德道,等.塔里木盆地柯坪-巴楚地区肖尔布拉克组储层特征与主控因素[J].天然气地球科学,2018,29(6):784-795. |
Wang Shan, Cao Yinghui, Du Dedao, et al. The characteristics and main controlling factors of dolostone reservoir in Lower Cambrian Xiaoerbulak Formation in Keping⁃Bachu area, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2018, 29(6):784-795. | |
19 | 斯扬,张文选,罗安湘,等.姬塬地区长9油层组地层水化学特征及其与油藏的关系[J].中国石油大学学报(自然科学版): 2019,43(2):25-36. |
Si Yang, Zhang Wenxuan, Luo Anxiang, et al. Hydrochemical characteristics and relationship between formation water and hydrocarbon reservoirs for Chang 9 in Jiyuan area[J]. Journal of China University of Petroleum (Edition of Natural Science): 2019, 43(2):25-36. | |
20 | 康永尚,张一伟.油气成藏流体动力学[M].北京:地质出版社,1999:1-120. |
Kang Yongshang, Zhang Yiwei. Hydrodynamics of hydrocarbon accumulation[M]. Beijing: Geological Publishing House, 1999:1-120. | |
21 | 雷易璇.关于地层水特性及其地质意义概述[J].化学工程与装备,2018,(4):129-131. |
Lei Yixuan. An overview of formation water characteristics and its geological significance[J]. Chemical Engineering and Equipment, 2018, (4):129-131. | |
22 | 王君,楼章华,朱蓉,等.渤海湾盆地东濮凹陷文留地区现今地层水化学与油气运聚[J].石油与天然气地质,2014,35(4):449-455. |
Wang Jun, Lou Zhanghua, Zhu Rong, et al. Hydrochemistry of paleogene formation water and its relationship with hydrocarbon migration and accumulation in Wenliu Region in Dongpu Sag,Bohai Bay Basin[J]. Oil & Gas Geology, 2014, 35(4):449-455. | |
23 | 梅啸寒,张琴,王雅芸,等.松辽盆地扶新隆起带扶杨油层地层水化学特征及其与油气运聚关系[J].石油与天然气地质,2020,41(2):328-338. |
Mei Xiaohan, Zhan Qin, Wang Yayun, et al. Hydrochemical characteristics of formation water and its relationship with hydrocarbon migration and accumulation in Fuyang oil layer in Fuxin Uplift,Songliao Basin[J]. Oil & Gas Geology, 2020, 41(2):328-338. | |
24 | 查明,陈中红.山东东营凹陷前古近系水化学场、水动力场与油气成藏[J].现代地质,2008,22(4):567-575. |
Zha Ming, Chen Zhonghong. Formation water chemical and hydrodynamic fields and their relations to the hydrocarbon accumulation in the Pre⁃Tertiary of Dongying Depression, Shandong[J]. Geoscie⁃nce, 2008, 22(4):567-575. | |
25 | 林晓英,曾溅辉,杨海军,等.塔里木盆地哈得逊油田石炭系地层水化学特征及成因[J].现代地质,2012,26(2):377-383. |
Lin Xiaoying, Zeng Jianhui, Yang Haijun, et al. Geochemical characteristics and origin of formation water from the carboniferous in Hadson oil field, Tarim Basin[J]. Geoscience, 2012, 26(2):377-383. | |
26 | 刘济民.油田水文地质勘探中水化学及其特性指标的综合应用[J].石油勘探与开发,1982, 9(6):49-55. |
Liu Jimin. The characteristics of underground water chemistry and its application in oilfield hydrology exploration[J]. Petroleum Exploration and Development, 1982, 9(6):49-55. | |
27 | 唐辉,陈洁,钱会.饱和指数在水-岩作用研究中的应用及其灵敏度分析[J].水资源与水工程学报,2012,23(6):180-183. |
Tang Hui, Chen Jie. Application of saturation index to research of water⁃rock interaction and its sensitivity analysis[J]. Journal of Water Resources and Water Engineering, 2012, 23(6):180-183. | |
28 | 李巧,周金龙,纪媛媛,等.新疆哈密地区三塘湖北地下水水-岩作用模拟[J].水资源与水工程学报,2013,24(6):29-33. |
Li Qiao, Zhou Jinlong, Ji Yuanyuan, et al. Water⁃rock interaction simulation of groundwater in north Santang lake of Hami District of Xinjiang[J]. Journal of Water Resources and Water Engineering, 2013, 24(6):29-33. | |
29 | Zhu G Y, Milkov A V, Zhang Z Y, et al. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China[J]. AAPG Bulletin, 2019, 103(7):1703-1743. |
30 | Birkle P, García B M, Milland Padrón C M. Origin and evolution of formation water at the Jujo⁃Tecominoacán oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water⁃rock interaction[J]. Applied Geochemistry, 2009, 24(4):543-554. |
31 | Hanor J S. Physical and chemical controls on the composition of waters in sedimentary basins[J]. Marine and Petroleum Geology, 1994, 11(1):31-45. |
32 | 王文祥,王瑞久,李文鹏,等.塔里木盆地河水氢氧同位素与水化学特征分析[J].水文地质工程地质,2013, 40(4):29-35. |
Wang Wenxiang, Wang Ruijiu, Li Wenpeng, et al. Analysis of stable isotopes and hydrochemistry of rivers in Tarim Basin[J]. Hydrogeology and Engineering Geology, 2013, 40(4):29-35. | |
33 | Millero F J, Feistel R, Wright D G, et al. The composition of standard seawater and the definition of the reference⁃composition salinity scale[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2008, 55(1):50-72. |
34 | Davisson M L, Criss R E. Na⁃Ca⁃Cl relations in basinal fluids[J]. Geochimica et Cosmochimica Acta, 1996, 60(15):2743-2752. |
35 | Lynton S L, Kitty L M. Feldspar diagenesis in the Frio Formation, Brazoria County, Texas gulf coast[J]. Geology, 1981, 9(7):314-318. |
36 | Chi G, Savard M. Sources of basinal and Mississippi Valley⁃type mineralizing brines: Mixing of evaporated seawater and halite⁃dissolution brine[J]. Chemical Geology, 1997, 143(3):121-125. |
37 | 邢秀娟,焦存礼,王毅,等.塔北地区寒武系白云岩特征与成因研究[J].石油实验地质,2011, 33(2):130-136. |
Xing Xiujuan, Jiao Cunli, Wang Yi, et al. Characteristics and origin of cambrian dolomite, northern Tarim Basin [J]. Petroleum Geology & Experiment, 2011, 33(2):130-136. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[8] | 翟常博, 林良彪, 尤东华, 刘冯斌, 刘思雨. 川西南地区中二叠统茅口组一段沉积微相特征及有机质富集模式[J]. 石油与天然气地质, 2024, 45(2): 440-456. |
[9] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[10] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[11] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[12] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[13] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
[14] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[15] | 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜—大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||