石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (3): 789-800.doi: 10.11743/ogg20230320
周家全1,2(), 王越3, 宋子怡4, 柳季廷5, 成赛男3
收稿日期:
2022-12-05
修回日期:
2023-03-10
出版日期:
2023-06-01
发布日期:
2023-06-05
第一作者简介:
周家全(1993—),男,博士研究生,沉积地球化学。E?mail: 基金项目:
Jiaquan ZHOU1,2(), Yue WANG3, Ziyi SONG4, Jiting LIU5, Sainan CHENG3
Received:
2022-12-05
Revised:
2023-03-10
Online:
2023-06-01
Published:
2023-06-05
摘要:
硅质岩已被广泛应用于重建古环境、示踪热液循环和硅化过程等方面,并且对陆相页岩油勘探开发具有重要意义。以准噶尔盆地博格达地区芦草沟组为研究对象,综合运用X射线衍射、元素面扫、主微量元素、镜质体反射率、岩石热解和总有机碳分析等方法对芦草沟组硅质岩成因机制及油气意义进行了研究。结果表明:芦草沟组硅质结核中软沉积物变形构造非常发育,主要由隐-微晶石英组成,指示结核为同沉积期形成。结核内部发育重晶石、锰菱铁矿、镍铁矿和蓝铜矿等热液矿物,并且稀土元素具有总量低、重稀土元素相对富集和正Eu异常等特征,指示其为热液成因,说明二叠纪研究区存在间歇性热液活动。热液带来的营养元素和金属阳离子提高了古生产力和古盐度,促使底水还原性增强,有利于有机质富集。硅质岩中孔隙和裂缝发育,其中显著富集的石英提高了储层脆性,有利于压裂改造。硅质岩伴生的热液活动参与了有机质生烃演化,使页岩油黏度降低, 可动性增强,有利于页岩油开发。
中图分类号:
图5
准噶尔盆地XLK1井芦草沟组硅质岩及围岩扫描电镜特征照片a. 硅质岩中自生重晶石发育,埋深4 226.72 m,背散射;b.硅质岩中的方解石及微晶镍铁矿,埋深4 226.73 m,背散射;c.硅质岩中锰菱铁矿发育,呈微晶分散状,埋深4 226.90 m,背散射[10];d.硅质岩中发育蓝铜矿及少量有机质,埋深4 226.90 m,背散射;e.硅质岩顶部黄铁矿及有机质发育,埋深4 226.91 m,背散射;f.硅质岩顶部的有机质及黄铁矿,埋深4 226.91 m,背散射;g.硅质岩上覆围岩中的有机质,二次电子;h.图g对应的背散射图像;i.硅质岩上覆围岩中的有机质,埋深4 226.72 m,背散射Brt.重晶石;Qz.石英; Cal.方解石;Trv.镍铁矿;Mnsd.锰菱铁矿;Azu.蓝铜矿;OM.有机质; Py.黄铁矿"
1 | 唐勇, 宋永, 何文军, 等. 准噶尔叠合盆地复式油气成藏规律[J]. 石油与天然气地质, 2022, 43(1): 132-148. |
TANG Yong, SONG Yong, HE Wenjun, et al. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar Basin[J]. Oil & Gas Geology, 2022, 43(1): 132-148. | |
2 | 陈建平, 王绪龙, 邓春萍, 等. 准噶尔盆地烃源岩与原油地球化学特征[J]. 地质学报, 2016, 90(1): 37-67. |
CHEN Jianping, WANG Xulong, DENG Chunping, et al. Geochemical features of source rocks and crude oil in the Junggar Basin, northwest China[J]. Acta Geologica Sinica, 2016, 90(1): 37-67. | |
3 | 支东明, 唐勇, 杨智峰, 等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 524-534. |
ZHI Dongming, TANG Yong, YANG Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534. | |
4 | 王越, 陈世悦, 张关龙, 等. 咸化湖盆混积岩分类与混积相带沉积相特征——以准噶尔盆地南缘芦草沟组与吐哈盆地西北缘塔尔朗组为例[J]. 石油学报, 2017, 38(9): 1021-1035, 1065. |
WANG Yue, CHEN Shiyue, ZHANG Guanlong, et al. Classifications of mixosedimentite and sedimentary facies characteristics of mixed sedimentary facies belt in saline lacustrine basin: Taking examples as the Lucaogou Formation in the south of Junggar Basin and the Taerlang Formation in the northwest of Tuha Basin[J]. Acta Petrolei Sinica, 2017, 38(9): 1021-1035, 1065. | |
5 | 王然, 常秋生, 钱永新, 等.准噶尔盆地吉木萨尔凹陷芦草沟组页岩油“甜点体”储集特征及成因机理[J]. 石油实验地质, 2020, 42(4): 604-611. |
WANG Ran, CHANG Qiusheng, QIAN Yongxin, et al. Reservoir characteristics and genesis of shale oil “sweet spots” in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 604-611. | |
6 | 杨焱钧. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组热液喷流沉积初探[D]. 西安: 西北大学, 2014. |
YANG Yanjun. A preliminary study on exhalative hydrothermal deposits in the Lucaogou Formation in Jimusar Sag, Permian, Zhunggar Basin[D]. Xi’an: Northwest University, 2014. | |
7 | 张桥. 新疆三塘湖盆地二叠系芦草沟组硅质岩成因探讨[D]. 西安: 西北大学, 2018. |
ZHANG Qiao. The petrogenesis of siliceous rocks in Permian Lucaogou Formation, Santanghu Basin, Xinjiang[D]. Xi’an: Northwest University, 2018. | |
8 | 魏研, 郭佩, 靳军, 等. 火山-碱湖沉积岩中的燧石成因: 以准噶尔盆地下二叠统风城组为例[J]. 矿物岩石, 2021, 41(2): 83-98. |
WEI Yan, GUO Pei, JIN Jun, et al. Silexite genesis in volcanic‑alkali lacustrine sedimentary rocks: A case study of the Lower Permian Fengcheng Formation, Junggar Basin[J]. Mineralogy and Petrology, 2021, 41(2): 83-98. | |
9 | SHEN Bing, MA Haoran, YE Heqing, et al. Hydrothermal origin of syndepositional chert bands and nodules in the Mesoproterozoic Wumishan Formation: Implications for the evolution of Mesoproterozoic cratonic basin, North China[J]. Precambrian Research, 2018, 310: 213-228. |
10 | MURRAY R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J]. Sedimentary Geology, 1994, 90(3/4): 213-232. |
11 | ZHOU Jiaquan, YANG Hailin, LIU Hanlin, et al. The depositional mechanism of hydrothermal chert nodules in a lacustrine environment: A case study in the Middle Permian Lucaogou Formation, Junggar Basin, Northwest China[J]. Minerals, 2022, 12(10): 1333. |
12 | YU Kuanhong, ZHANG Zhijie, CAO Yingchang, et al. Origin of biogenic‑induced cherts from Permian alkaline saline lake deposits in the NW Junggar Basin, NW China: Implications for hydrocarbon exploration[J]. Journal of Asian Earth Sciences, 2021, 211: 104712. |
13 | LIU Guoheng, ZHAI Gangyi, ZOU Caineng, et al. A comparative discussion of the evidence for biogenic silica in Wufeng‑Longmaxi siliceous shale reservoir in the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 109: 70-87. |
14 | 高媛, 王国芝, 李娜. 准噶尔盆地西北缘二叠系风城组硅质岩地球化学特征及成因[J]. 古地理学报, 2019, 21(4): 647-660. |
GAO Yuan, WANG Guozhi, LI Na. Geochemical features and origin of siliceous rocks of the Permian Fengcheng Formation in the northwestern margin of Junggar Basin[J]. Journal of Palaeogeography, 2019, 21(4): 647-660. | |
15 | 刘国恒, 黄志龙, 郭小波, 等. 新疆三塘湖盆地马朗凹陷中二叠统芦草沟组泥页岩层系SiO2赋存状态与成因[J]. 地质学报, 2016, 90(6): 1220-1235. |
LIU Guoheng, HUANG Zhilong, GUO Xiaobo, et al. The SiO2 occurrence and origin in the shale system of Middle Permian series Lucaogou Formation in Malang Sag, Santanghu Basin, Xinjiang[J]. Acta Geologica Sinica, 2016, 90(6): 1220-1235. | |
16 | 白斌, 戴朝成, 侯秀林, 等. 陆相湖盆页岩自生硅质特征及其油气意义[J]. 石油勘探与开发, 2022, 49(5): 896-907. |
BAI Bin, DAI Chaocheng, HOU Xiulin, et al. Authigenic silica in continental lacustrine shale and its hydrocarbon significance[J]. Petroleum Exploration and Development, 2022, 49(5): 896-907. | |
17 | MURCHEY B L, JONES D L. A mid‑Permian chert event: Widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 96(1/2): 161-174. |
18 | DONG Yixin, XU Shenglin, WEN Long, et al. Tectonic control of Guadalupian‑Lopingian cherts in northwestern Sichuan Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 557: 109915. |
19 | GAO Ping, HE Zhiliang, LASH G G, et al. Mixed seawater and hydrothermal sources of nodular chert in Middle Permian limestone on the eastern Paleo‑Tethys margin (South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 551: 109740. |
20 | JIAO Xin, LIU Yiqun, YANG Wan, et al. Mixed biogenic and hydrothermal quartz in Permian lacustrine shale of Santanghu Basin, NW China: Implications for penecontemporaneous transformation of silica minerals[J]. International Journal of Earth Sciences, 2018, 107(6): 1989-2009. |
21 | 蔡全升, 陈孝红, 张保民, 等. 鄂西宜昌地区五峰组—龙马溪组黑色岩系硅质来源及其油气地质意义[J]. 地质学报, 2020, 94(3): 931-946. |
CAI Quansheng, CHEN Xiaohong, ZHANG Baomin, et al. Origin of siliceous minerals in the black shale of the Wufeng and Longmaxi Formations in the Yichang area, western Hubei Province: Geological significance for shale gas[J]. Acta Geologica Sinica, 2020, 94(3): 931-946. | |
22 | 管全中, 董大忠, 张华玲, 等. 富有机质页岩生物成因石英的类型及其耦合成储机制——以四川盆地上奥陶统五峰组—下志留统龙马溪组为例[J]. 石油勘探与开发, 2021, 48(4): 700-709. |
GUAN Quanzhong, DONG Dazhong, ZHANG Hualing, et al. Types of biogenic quartz and its coupling storage mechanism in organic‑rich shales: A case study of the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(4): 700-709. | |
23 | SUN Funing, HU Wenxuan, WANG Xiaolin, et al. Methanogen microfossils and methanogenesis in Permian lake deposits[J]. Geology, 2021, 49(1): 13-18. |
24 | SUN Funing, HU Wenxuan, CAO Jian, et al. Sustained and intensified lacustrine methane cycling during Early Permian climate warming[J]. Nature Communications, 2022, 13(1): 4856. |
25 | GAO Yuan, HUANG He, TAO Huifei, et al. Paleoenvironmental setting, mechanism and consequence of massive organic carbon burial in the Permian Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 2020, 194: 104222. |
26 | LIU Jun, YI Jian, CHEN Jianye. Constraining assembly time of some blocks on eastern margin of Pangea using Permo‑Triassic non‑marine tetrapod records[J]. Earth‑Science Reviews, 2020, 207: 103215. |
27 | ALLEN M B, ŞENGÖR A M C, NATAL’IN B A. Junggar, Turfan and Alakol basins as Late Permian to? Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic collage, Central Asia[J]. Journal of the Geological Society, 1995, 152(2): 327-338. |
28 | ZHAO Rui, ZHANG Jinyu, ZHOU Chuanmin, et al. Tectonic evolution of Tianshan‑Bogda‑Kelameili mountains, clastic wedge basin infill and chronostratigraphic divisions in the source‑to‑sink systems of Permian‑Jurassic, southern Junggar Basin[J]. Marine and Petroleum Geology, 2020, 114: 104200. |
29 | TAO Huifei, QIU Zhen, QU Yongqiang, et al. Geochemistry of Middle Permian lacustrine shales in the Jimusar Sag, Junggar Basin, NW China: Implications for hydrothermal activity and organic matter enrichment[J]. Journal of Asian Earth Sciences, 2022, 232: 105267. |
30 | 柳益群, 周鼎武, 焦鑫, 等. 深源物质参与湖相烃源岩生烃作用的初步研究——以准噶尔盆地吉木萨尔凹陷二叠系黑色岩系为例[J]. 古地理学报, 2019, 21(6): 983-998. |
LIU Yiqun, ZHOU Dingwu, JIAO Xin, et al. A preliminary study on the relationship between deep‑sourced materials and hydrocarbon generation in lacustrine source rocks: An example from the Permian black rock series in Jimusar Sag, Junggar Basin[J]. Journal of Palaeogeography, 2019, 21(6): 983-998. | |
31 | LIU Dadong, FAN Qingqing, ZHANG Chen, et al. Paleoenvironment evolution of the Permian Lucaogou Formation in the southern Junggar Basin, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 603: 111198. |
32 | 唐勇, 侯章帅, 王霞田, 等. 准噶尔盆地石炭纪—二叠纪地层对比框架新进展[J]. 地质论评, 2022, 68(2): 385-407. |
TANG Yong, HOU Zhangshuai, WANG Xiatian, et al. Progress of the carboniferous and Permian stratigraphic framework and correlation of the Junggar Basin, Xinjiang, northwest China[J]. Geological Review, 2022, 68(2): 385-407. | |
33 | 刘可禹, 刘畅. “化学-沉积相”分析:一种研究细粒沉积岩的有效方法[J]. 石油与天然气地质, 2019, 40(3): 491-503. |
LIU Keyu, LIU Chang. “Chemo‑sedimentary facies” analysis: An effective method to study fine‑grained sedimentary rocks[J]. Oil & Gas Geology, 2019, 40(3): 491-503. | |
34 | 国家能源局. 沉积岩中镜质体反射率测定方法: [S]. 北京: 石油工业出版社, 2012. |
National Energy Administration. Method of determining microscopically the reflectance of vitrinite in sedimentary: [S]. Beijing: Petroleum Industry Press, 2012. | |
35 | YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes[J]. Sedimentary Geology, 1987, 52(1/2): 65-108. |
36 | BEAUCHAMP B, BAUD A. Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end‑Permian collapse of thermohaline circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 184(1/2): 37-63. |
37 | ADACHI M, YAMAMOTO K, SUGISAKI R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148. |
38 | TRÉGUER P, NELSON D M, VAN BENNEKOM A J, et al. The silica balance in the world ocean: A reestimate[J]. Science, 1995, 268(5209): 375-379. |
39 | TRÉGUER P J, DE LA ROCHA C L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5: 477-501. |
40 | HEDENQUIST J W, LOWENSTERN J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370(6490): 519-527. |
41 | 时志强, 王毅, 金鑫, 等. 塔里木盆地志留系热液碎屑岩储层:证据、矿物组合及油气地质意义[J]. 石油与天然气地质, 2014, 35(6): 903-913. |
SHI Zhiqiang, WANG Yi, JIN Xin, et al. The Silurian hydrothermal clastic reservoirs in Tarim Basin: Evidences, mineral assemblages and its petroleum geological implications[J]. Oil & Gas Geology, 2014, 35(6): 903-913. | |
42 | ZABEL M, SCHNEIDER R R, WAGNER T, et al. Late quaternary climate changes in central Africa as inferred from terrigenous input to the Niger fan[J]. Quaternary Research, 2001, 56(2): 207-217. |
43 | MILLS R A, ELDERFIELD H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid‑Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3511-3524. |
44 | 卢龙飞, 秦建中, 申宝剑, 等. 川东南涪陵地区五峰—龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质, 2016, 38(4): 460-465, 472. |
LU Longfei, QIN Jianzhong, SHEN Baojian, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng‑Longmaxi formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology and Experiment, 2016, 38(4): 460-465, 472. | |
45 | 李长志, 郭佩, 柯先启, 等. 火山活动影响下的碱湖优质烃源岩成因及其对页岩油气勘探和开发的启示[J]. 石油与天然气地质, 2021, 42(6): 1423-1434. |
LI Changzhi, GUO Pei, KE Xianqi, et al. Genesis of high‑quality source rocks in volcano‑related alkaline lakes and implications for the exploration and development of shale oil and gas[J]. Oil & Gas Geology, 2021, 42(6): 1423-1434. | |
46 | 朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264. |
ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264. | |
47 | ZABEL M, BICKERT T, DITTERT L, et al. Significance of the sedimentary Al:Ti ratio as an indicator for variations in the circulation patterns of the equatorial North Atlantic[J]. Paleoceanography and Paleoclimatology, 1999, 14(6): 789-799. |
48 | SCHMITZ B. Barium, equatorial high productivity, and the northward wandering of the Indian continent[J]. Paleoceanography and Paleoclimatology, 1987, 2(1): 63-77. |
49 | TYRRELL T. The relative influences of nitrogen and phosphorus on oceanic primary production[J]. Nature, 1999, 400(6744): 525-531. |
50 | CHEN Lin, JIANG Shu, CHEN Ping, et al. Relative sea‑level changes and organic matter enrichment in the Upper Ordovician‑Lower Silurian Wufeng‑Longmaxi Formations in the Central Yangtze area, China[J]. Marine and Petroleum Geology, 2021, 124: 104809. |
51 | PAYTAN A, MEARON S, COBB K, et al. Origin of marine barite deposits: Sr and S isotope characterization[J]. Geology, 2002, 30(8): 747-750. |
52 | 刘惠民, 杨怀宇, 张鹏飞, 等. 古湖泊水介质条件对混积岩相组合沉积的控制作用——以渤海湾盆地东营凹陷古近系沙河街组三段为例[J]. 石油与天然气地质, 2022, 43(2): 297-306. |
LIU Huimin, YANG Huaiyu, ZHANG Pengfei, et al. Control effect of paleolacustrine water conditions on mixed lithofacies assemblages: A case study of the Palaeogene Es3, Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(2): 297-306. | |
53 | 刘萍, 谭先锋, 陈青, 等. 早始新世极热气候时期湖盆水体性质及生烃环境——以东营凹陷古近系孔店组为例[J]. 石油与天然气地质, 2017, 38(1): 39-48, 143. |
LIU Ping, TAN Xianfeng, CHEN Qing, et al. Water redox conditions and environment for source rock deposition in lacustrine during the Initial Eocene Thermal Maximum (IETM): A case study on the Paleogene Kongdian Formation in the Dongying Sag[J]. Oil & Gas Geology, 2017, 38(1): 39-48, 143. | |
54 | 马克, 侯加根, 董虎, 等. 页岩油储层混合细粒沉积孔喉特征及其对物性的控制作用——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油与天然气地质, 2022, 43(5): 1194-1205. |
MA Ke, HOU Jiagen, DONG Hu, et al. Pore throat characteristics of fine‑grained mixed deposits in shale oil reservoirs and their control on reservoir physical properties: A case study of the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Oil & Gas Geology, 2022, 43(5): 1194-1205. | |
55 | JIN Zhijun, ZHU Rukai, LIANG Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1471-1484. |
56 | 孙彪, 刘小平, 舒红林, 等. 湖相泥页岩储层脆性评价及影响因素分析——以苏北盆地海安凹陷曲塘次凹泥页岩为例[J]. 石油实验地质, 2021, 43(6): 1006-1014. |
SUN Biao, LIU Xiaoping, SHU Honglin, et al. Evaluation and influencing factors for brittleness of lacustrine shale reservoir: a case study of Qutang Sub-Sag, Subei Basin[J].Petroleum Geology & Experiment, 2021, 43(6): 1006-1014. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[5] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[6] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[7] | 翟常博, 林良彪, 尤东华, 刘冯斌, 刘思雨. 川西南地区中二叠统茅口组一段沉积微相特征及有机质富集模式[J]. 石油与天然气地质, 2024, 45(2): 440-456. |
[8] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[9] | 潘虹, 于庆森, 李晓山, 宋俊强, 蒋志斌, 王丽, 罗官幸, 徐文秀, 尤浩宇. 准噶尔盆地红车断裂带石炭系重新认识及油气成藏特征[J]. 石油与天然气地质, 2024, 45(1): 215-230. |
[10] | 侯读杰, 吴克强, 尤丽, 张自鸣, 李雅君, 熊小峰, 徐敏, 严夏泽, 陈威合, 程熊. 琼东南盆地陆源海相烃源岩有机质富集机理[J]. 石油与天然气地质, 2024, 45(1): 31-43. |
[11] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[12] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
[13] | 米立军, 徐建永, 李威. 渤海海域页岩油资源潜力[J]. 石油与天然气地质, 2023, 44(6): 1366-1377. |
[14] | 刘惠民, 李政, 包友书, 张守春, 王伟庆, 吴连波, 王勇, 朱日房, 方正伟, 张顺, 刘鹏, 王敏. 渤海湾盆地济阳坳陷高产页岩油井BYP5页岩地质特征[J]. 石油与天然气地质, 2023, 44(6): 1405-1417. |
[15] | 王民, 余昌琦, 费俊胜, 李进步, 张宇辰, 言语, 吴艳, 董尚德, 唐育龙. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||