石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (6): 1479-1498.doi: 10.11743/ogg20230612
李明1(), 王民1(), 张金友2,3, 张宇辰1, 刘召2,3, 雒斌4,5, 卞从胜6, 李进步1,7, 王鑫1, 赵信斌1, 董尚德1
收稿日期:
2023-07-14
修回日期:
2023-09-26
出版日期:
2023-12-01
发布日期:
2023-12-20
通讯作者:
王民
E-mail:geoliming@163.com;wangm@upc.edu.cn
第一作者简介:
李明(1994—),男,博士研究生,地质资源与地质工程。E-mail:基金项目:
Ming LI1(), Min WANG1(), Jinyou ZHANG2,3, Yuchen ZHANG1, Zhao LIU2,3, Bin LUO4,5, Congsheng BIAN6, Jinbu LI1,7, Xin WANG1, Xinbin ZHAO1, Shangde DONG1
Received:
2023-07-14
Revised:
2023-09-26
Online:
2023-12-01
Published:
2023-12-20
Contact:
Min WANG
E-mail:geoliming@163.com;wangm@upc.edu.cn
摘要:
页岩油组分是揭示页岩油富集机制的基础,也是研究页岩孔隙内油-水-岩相互作用必不可少的参数。选择松辽盆地古龙凹陷白垩系青山口组一段纯页岩型页岩油、渤海湾盆地济阳坳陷东营凹陷古近系沙河街组四段纯上次亚段过渡型页岩油和鄂尔多斯盆地三叠系延长组7段3亚段纯页岩型页岩油作为研究对象,利用保压取心、常规取心、页岩层段产出油及高压釜热模拟产物,开展全烃色谱、热解气相色谱等实验,进行不同成熟度和不同类型页岩油组分系统评价。总结获取页岩油组分的方法,对比不同方法评价结果,讨论页岩残留烃组分的控制因素,提出页岩油组分评价方案。明确了产出油组分、热释烃组分、抽提物组分和热模拟产物组分间的差异以及上述评价方法的局限,解释了高有机碳丰度层段高含油率原因,高有机碳丰度层段代表高含油率,但不一定代表页岩油可动比例高。页岩热演化程度直接控制页岩油组分,有机质丰度和孔隙结构对页岩残留烃组分有一定影响。在页岩含油率评价、流体赋存特征以及页岩油富集机制研究时需考虑烃类散失,尤其是中-高成熟页岩。不同成熟度页岩油的组分评价为揭示页岩纳米孔内流体赋存特征提供新的方法。
中图分类号:
图2
页岩样品镜下特征a. 古龙凹陷G15页岩样品单偏光镜下照片,硅质纹层与富有机质黏土纹层互层,G1井,青一段;b. 为a图黄色框视域放大图;c. 古龙凹陷G15页岩样品场发射扫描电镜照片,见有机孔及黏土粒间孔,G1井,青一段;d. 东营凹陷J149页岩单偏光镜下照片,方解石纹层与有机质黏土纹层互层,J2井,沙四纯上次亚段;e. 东营凹陷J159页岩单偏光镜下照片,方解石纹层与有机质黏土纹层互层,J2井,沙四纯上次亚段;f. 东营凹陷J159页岩场发射扫描电镜照片,J2井,沙四纯上次亚段;g. 鄂尔多斯盆地E342样品场发射扫描电镜照片,有机质-黏土复合体顺层分布,E3井,长73亚段;h. 鄂尔多斯盆地E349样品单偏光镜下照片,黑褐色富有机质纹层与浅褐色黏土质纹层互层,E3井,长73亚段;i. 鄂尔多斯盆地E358样品单偏光镜下照片,上部黄褐色区域为火山灰及少量石英、长石晶屑组成的凝灰质纹层,下部深褐色为黏土矿物组成的黏土纹层,E3井,长73亚段(图中“A”代表方解石纹层,“B”代表有机质黏土纹层。)"
表1
岩心样品基础信息"
区域 | 层位 | 井号 | 样品 编号 | Ro/% | TOC/% | S1/ (mg /g) | S2/ (mg /g) | 矿物含量/% | |||
---|---|---|---|---|---|---|---|---|---|---|---|
石英 | 斜长石 | 方解石 | 黏土矿物 | ||||||||
古龙凹陷 | 青一段 | G1 | G15 | 1.54* | 1.9 | 2.4 | 3.4 | 27.6 | 14.4 | 0 | 58.0 |
G62 | 1.53* | 1.6 | 5.3** | 5.3** | 23.2 | 16.1 | 5.7 | 47.0 | |||
东营凹陷 | 沙四纯上次亚段 | J2 | J149 | 0.78 | 4.1 | 2.1 | 9.0 | 27.0 | 11.0 | 10.0 | 33.0 |
J159 | 0.78 | 1.8 | 0.8 | 1.9 | 16.0 | 7.0 | 46.0 | 21.0 | |||
鄂尔多斯盆地 伊陕斜坡 | 长73亚段 | E3 | E342 | 0.92 | 16.0 | 5.1 | 65.9 | 15.2 | 9.6 | 0 | 69.6 |
E349 | 0.93 | 20.4 | 6.2 | 85.9 | 14.9 | 11.4 | 4.0 | 32.5 | |||
E358 | 0.94 | 5.5 | 5.0 | 21.5 | 57.7 | 5.5 | 0 | 35.3 | |||
E41 | 0.92 | 15.7 | 4.0 | 60.9 | 18.4 | 8.7 | 0 | 68.4 | |||
E96 | 0.93 | 2.6 | 3.1 | 5.4 | 19.0 | 12.9 | 0 | 34.7 |
表3
页岩抽提物组分信息统计"
区域 | 层位 | 井号 | 样品号 | 沥青含量/% | 饱芳占比/% | 正构烷烃 碳数分布 | 主峰 碳数 | CPI | 轻/重比 | (nC21+nC22)/(nC28+nC29) | |
---|---|---|---|---|---|---|---|---|---|---|---|
古龙凹陷 | 青一段 | G1 | G15 | 0.811 | 86.20 | 10 ~ 34 | 16 | 1.10 | 1.94 | 3.24 | |
东营凹陷 | 沙四纯上 次亚段 | J2 | J149 | 0.281 | 87.88 | 9 ~ 34 | 15 | 1.04 | 1.81 | 3.11 | |
J159 | 0.113 | 76.36 | 9 ~ 35 | 12 | 1.05 | 2.73 | 2.56 | ||||
鄂尔多斯盆地 伊陕斜坡 | 长73亚段 | E3 | E41 | 0.781 | 47.08 | 9 ~ 33 | 14 | 0.98 | 3.49 | 2.50 | |
E96 | 1.027 | 75.26 | 10 ~ 33 | 19 | 1.09 | 1.59 | 2.48 | ||||
区域 | 样品号 | 部分芳烃化合物含量/10-6 | |||||||||
菲 | (2,10+1,3+3,10+3,9)- 二甲基菲 | 9- 甲基菲 | 2- 甲基菲 | 1- 甲基菲 | 1,7- 二甲基菲 | 1,7- 二甲基萘 | (1,3+1,6)- 二甲基萘 | ||||
古龙凹陷 | G15 | — | — | — | — | — | — | — | — | ||
东营凹陷 | J149 | 4 164.51 | 3 014.69 | 2 797.33 | 2 644.19 | 2 100.14 | 1 173.79 | 859.97 | 806.41 | ||
J159 | 1 686.93 | 1 273.93 | 1 220.70 | 1 131.26 | 890.40 | 494.49 | 66.34 | 61.77 | |||
鄂尔多斯盆地 伊陕斜坡 | E41 | 14 179.79 | 11 907.94 | 10 986.83 | 6 759.74 | 6 894.96 | 5 304.28 | 12 728.30 | 13 022.38 | ||
E96 | 1 589.16 | 2 421.60 | 1 687.99 | 1 129.14 | 1 145.68 | 1 240.36 | 82.37 | 95.81 |
1 | 中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. 页岩油地质评价方法: [S]. 北京: 中国标准出版社, 2020. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Geological evaluating methods for shale oil: [S]. Beijing: Standards Press of China, 2020. | |
2 | 贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48(3): 437-452. |
JIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 437-452. | |
3 | 邹才能, 杨智, 董大忠, 等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学, 2022, 47(5): 1517-1533. |
ZOU Caineng, YANG Zhi, DONG Dazhong, et al. Formation, distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science, 2022, 47(5): 1517-1533. | |
4 | 赵文智, 朱如凯, 刘伟, 等. 我国陆相中高熟页岩油富集条件与分布特征[J]. 地学前缘, 2023, 30(1): 116-127. |
ZHAO Wenzhi, ZHU Rukai, LIU Wei, et al. Lacustrine medium-high maturity shale oil in onshore China: Enrichment conditions and occurrence features[J]. Earth Science Frontiers, 2023, 30(1): 116-127. | |
5 | 金之钧, 朱如凯, 梁新平, 等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发, 2021, 48(6): 1276-1287. |
JIN Zhijun, ZHU Rukai, LIANG Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1276-1287. | |
6 | 赵文智, 胡素云, 侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发, 2018, 45(4): 537-545. |
ZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545. | |
7 | 赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10. |
ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10. | |
8 | 胡素云, 赵文智, 侯连华, 等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发, 2020, 47(4): 819-828. |
HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819-828. | |
9 | 国家能源局. 2022年全国油气勘探开发十大标志性成果[EB/OL]. (2023-01-20)[2023-04-16]. . |
National Energy Administration. China’s top ten landmark achievements in oil and gas exploration and development in 2022[EB/OL]. (2023-01-20)[2023-04-16]. . | |
10 | 付金华, 刘显阳, 李士祥, 等. 鄂尔多斯盆地三叠系延长组长7段页岩油勘探发现与资源潜力[J]. 中国石油勘探, 2021, 26(5): 1-11. |
FU Jinhua, LIU Xianyang, LI Shixiang, et al. Discovery and resource potential of shale oil of Chang 7 member, Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2021, 26(5): 1-11. | |
11 | 付金华, 牛小兵, 李明瑞, 等. 鄂尔多斯盆地延长组7段3亚段页岩油风险勘探突破与意义[J]. 石油学报, 2022, 43(6): 760-769, 787. |
FU Jinhua, NIU Xiaobing, LI Mingrui, et al. Breakthrough and significance of risk exploration in the 3rd sub-member, 7th Member of Yanchang Formation in Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(6): 760-769, 787. | |
12 | 席胜利, 魏嘉怡, 张才利, 等. 鄂尔多斯盆地海相页岩油勘探发现及意义[J]. 石油学报, 2023, 44(2): 253-269. |
XI Shengli, WEI Jiayi, ZHANG Caili, et al. Discovery and significance of marine shale oil exploration in Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(2): 253-269. | |
13 | 符慧, 王维东, 于佳. 胜利油田 打造中国陆相页岩油勘探开发样本[N]. 中国石化报, 2022-08-29(05). |
FU Hui, WANG Weidong, YU Jia. Shengli Oilfield: A sample of continental shale oil exploration and development in China[N]. China Petrochemical News, 2022-08-29(05). | |
14 | 孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(3): 453-463. |
SUN Longde, LIU He, HE Wenyuan, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 453-463. | |
15 | 朱国文, 王小军, 张金友, 等. 松辽盆地陆相页岩油富集条件及勘探开发有利区[J]. 石油学报, 2023, 44(1): 110-124. |
ZHU Guowen, WANG Xiaojun, ZHANG Jinyou, et al. Enrichment conditions and favorable zones for exploration and development of continental shale oil in Songliao Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 110-124. | |
16 | 李国欣, 朱如凯, 张永庶, 等. 柴达木盆地英雄岭页岩油地质特征、评价标准及发现意义[J]. 石油勘探与开发, 2022, 49(1): 18-31. |
LI Guoxin, ZHU Rukai, ZHANG Yongshu, et al. Geological characteristics, evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 18-31. | |
17 | 李国欣, 伍坤宇, 朱如凯, 等. 巨厚高原山地式页岩油藏的富集模式与高效动用方式——以柴达木盆地英雄岭页岩油藏为例[J]. 石油学报, 2023, 44(1): 144-157. |
LI Guoxin, WU Kunyu, ZHU Rukai, et al. Enrichment model and high-efficiency production of thick plateau mountainous shale oil reservoir: A case study of the Yingxiongling shale oil reservoir in Qaidam Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 144-157. | |
18 | 云露, 何希鹏, 花彩霞, 等. 苏北盆地溱潼凹陷古近系陆相页岩油成藏地质特征及资源潜力[J]. 石油学报, 2023, 44(1): 176-187. |
YUN Lu, HE Xipeng, HUA Caixia, et al. Accumulation characteristics and resource potential of Paleogene continental shale oil in Qintong Sag of Subei Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 176-187. | |
19 | 何文渊, 白雪峰, 蒙启安, 等. 四川盆地陆相页岩油成藏地质特征与重大发现[J]. 石油学报, 2022, 43(7): 885-898. |
HE Wenyuan, BAI Xuefeng, MENG Qi’an, et al. Accumulation geological characteristics and major discoveries of lacustrine shale oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(7): 885-898. | |
20 | 何文渊, 何海清, 王玉华, 等. 川东北地区平安1井侏罗系凉高山组页岩油重大突破及意义[J]. 中国石油勘探, 2022, 27(1): 40-49. |
HE Wenyuan, HE Haiqing, WANG Yuhua, et al. Major breakthrough and significance of shale oil of the Jurassic Lianggaoshan Formation in Well Ping’an 1 in northeastern Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1): 40-49. | |
21 | 万晓帆, 刘丛丛, 赵德锋, 等. 页岩油研究热点与发展趋势[J]. 地球科学, 2023, 48(2): 793-813. |
WAN Xiaofan, LIU Congcong, ZHAO Defeng, et al. Hotspot and development trend of shale oil research[J]. Earth Science, 2023, 48(2): 793-813. | |
22 | 葸克来, 李克, 操应长, 等. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式[J]. 石油勘探与开发, 2020, 47(6): 1244-1255. |
XI Kelai, LI Ke, CAO Yingchang, et al. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1244-1255. | |
23 | 赵贤正, 周立宏, 蒲秀刚, 等. 湖相页岩滞留烃形成条件与富集模式——以渤海湾盆地黄骅坳陷古近系为例[J]. 石油勘探与开发, 2020, 47(5): 856-869. |
ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Formation conditions and enrichment model of retained petroleum in lacustrine shale: A case study of the Paleogene in Huanghua Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2020, 47(5): 856-869. | |
24 | 柳波, 孙嘉慧, 张永清, 等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发, 2021, 48(3): 521-535. |
LIU Bo, SUN Jiahui, ZHANG Yongqing, et al. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535. | |
25 | 李士祥, 郭芪恒, 周新平, 等. 鄂尔多斯盆地延长组7段3亚段页岩型页岩油储层特征及勘探方向[J]. 石油学报, 2022, 43(11): 1509-1519. |
LI Shixiang, GUO Qiheng, ZHOU Xinping, et al. Reservoir characteristics and exploration direction of pure shale-type shale oil in the 3rd sub-member, 7th Member of Yanchang Formation in Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(11): 1509-1519. | |
26 | JIANG Chunqing, CHEN Zhuoheng, MORT A, et al. Hydrocarbon evaporative loss from shale core samples as revealed by Rock-Eval and thermal desorption-gas chromatography analysis: Its geochemical and geological implications[J]. Marine and Petroleum Geology, 2016, 70: 294-303. |
27 | ROMERO-SARMIENTO M F, RAMIRO-RAMIREZ S, BERTHE G, et al. Geochemical and petrophysical source rock characterization of the Vaca Muerta Formation, Argentina: Implications for unconventional petroleum resource estimations[J]. International Journal of Coal Geology, 2017, 184: 27-41. |
28 | LI Jinbu, JIANG Chunqing, WANG Min, et al. Determination of in situ hydrocarbon contents in shale oil plays. Part 1: Is routine Rock-Eval analysis reliable for quantifying the hydrocarbon contents of preserved shale cores?[J]. Organic Geochemistry, 2022, 170: 104449. |
29 | JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(4): 307-325. |
30 | PAN Songqi, GUO Qiulei, ZOU Caineng, et al. Identification of sweet spots in shale-type and siltstone-type “shale oil systems”: A case study of the Chang 7 Member in Ordos Basin[J]. Science China Earth Sciences, 2023, 66(7): 1647-1663. |
31 | HORSFIELD B, DUEPPENBECKER S J. The decomposition of posidonia shale and green river shale kerogens using microscale sealed vessel (MSSV) pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 1991, 20: 107-123. |
32 | FANG Chenchen, XIONG Yongqiang, LI Yun, et al. The origin and evolution of adamantanes and diamantanes in petroleum[J]. Geochimica et Cosmochimica Acta, 2013, 120: 109-120. |
33 | 彭威龙, 胡国艺, 刘全有, 等. 热模拟实验研究现状及值得关注的几个问题[J]. 天然气地球科学, 2018, 29(9): 1252-1263. |
PENG Weilong, HU Guoyi, LIU Quanyou, et al. Research status on thermal simulation experiment and several issues for concerns[J]. Natural Gas Geoscience, 2018, 29(9): 1252-1263. | |
34 | 国家石油和化学工业局. 原油和石油产品密度测定法(U形振动管法): [S]. 北京: 中国标准出版社, 2021. |
State Bureau of Petroleum and Chemical Industry. Crude petroleum and petroleum products-determination of density-oscillating U-tube method: [S]. Beijing: Standards Press of China, 2021. | |
35 | 中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. 原油蜡含量的测定: [S]. 北京: 中国标准出版社, 2022. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Determination of wax content in crude oil: [S]. Beijing: Standards Press of China, 2022. | |
36 | 中华人民共和国国家发展和改革委员会. 石油和沉积有机质烃类气相色谱分析方法: [S]. 北京: 石油工业出版社, 2008. |
National Development and Reform Commission. Analytical method of hydrocarbons in petroleum and sediment by gas chromatography: [S]. Beijing: Petroleum Industry Press, 2008. | |
37 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气相色谱-质谱法测定沉积物和原油中生物标志物: [S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. The test method for biomarkers in sediment and crude oil by GC-MS: [S]. Beijing: Standards Press of China, 2017. | |
38 | 国家能源局. 石油地质样品中性氮化合物分离及检测方法: [S]. 北京: 石油工业出版社, 2019. |
National Energy Administration. Method for the separation and detection of neutral nitrogen compounds in oil and rock extract: [S]. Beijing: Petroleum Industry Press, 2019. | |
39 | 王民, 李明, 李进步, 等. 页岩含油率多种测试方法对比[J]. 石油学报, 2022, 43(12): 1758-1769. |
WANG Min, LI Ming, LI Jinbu, et al. Comparative analysis of test methods for shale oil content[J]. Acta Petrolei Sinica, 2022, 43(12): 1758-1769. | |
40 | 国家能源局. 岩石热解气相色谱分析方法: [S]. 北京: 石油工业出版社, 2016. |
National Energy Administration. Analysis method for rock pyrolysis gas chromatography: [S]. Beijing: Petroleum Industry Press, 2016. | |
41 | 白斌, 戴朝成, 侯秀林, 等. 松辽盆地白垩系青山口组页岩层系非均质地质特征与页岩油甜点评价[J]. 石油与天然气地质, 2023, 44(4): 846-856. |
BAI Bin, DAI Chaocheng, HOU Xiulin, et al. Geological heterogeneity of shale sequence and evaluation of shale oil sweet spots in the Qingshankou Formation, Songliao Basin[J]. Oil & Gas Geology, 2023, 44(4): 846-856. | |
42 | JACOB H, HILTMANN W. Disperse bitumen solids as an indicator for migration and maturity within the scope of prospecting for petroleum and natural gas: DGMK-267[R]. Hamburg: Deutsche Gesellschaft fuer Mineraloelwissenschaft und Kohlechemie e.V., 1985. |
43 | 蔚远江, 王红岩, 刘德勋, 等. 中国陆相页岩油示范区发展现状及建设可行性评价指标体系[J]. 地球科学, 2023, 48(1): 191-205. |
YU Yuanjiang, WANG Hongyan, LIU Dexun, et al. Development status and feasibility evaluation index system of continental shale oil demonstration area in China[J]. Earth Science, 2023, 48(1): 191-205. | |
44 | 孙龙德, 崔宝文, 朱如凯, 等. 古龙页岩油富集因素评价与生产规律研究[J]. 石油勘探与开发, 2023, 50(3): 441-454. |
SUN Longde, CUI Baowen, ZHU Rukai, et al. Shale oil enrichment evaluation and production law in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2023, 50(3): 441-454. | |
45 | Anon. Chemical and physical properties of Octadecane[Z/OL]. [2023-6-15]. . |
46 | SCHORNACK L G, ECKERT C A. Effect of pressure on the density and dielectric constant of polar solvents[J]. The Journal of Physical Chemistry, 1970, 74(15): 3014-3020. |
47 | 焦方正. 鄂尔多斯盆地页岩油缝网波及研究及其在体积开发中的应用[J]. 石油与天然气地质, 2021, 42(5): 1181-1188. |
JIAO Fangzheng. FSV estimation and its application to development of shale oil via volume fracturing in the Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1181-1188. | |
48 | 朱海燕, 徐鑫勤, 钟安海, 等. 深层页岩油水平井密切割裂缝均衡扩展数值模拟——以胜利油田YYP1井为例[J]. 石油与天然气地质, 2022, 43(1): 229-240. |
ZHU Haiyan, XU Xinqin, ZHONG Anhai, et al. Numerical simulation of evenly propagating hydraulic fractures with smaller cluster spacing in the horizontal Well YYP1 for deep shale oil in the Shengli Oilfield[J]. Oil & Gas Geology, 2022, 43(1): 229-240. | |
49 | 刘惠民. 济阳坳陷古近系页岩油地质特殊性及勘探实践——以沙河街组四段上亚段—沙河街组三段下亚段为例[J]. 石油学报, 2022, 43(5): 581-594. |
LIU Huimin. Geological particularity and exploration practice of Paleogene shale oil in Jiyang Depression: A case study of the upper submember of Member 4 to the lower submember of Member 3 of Shahejie Formation[J]. Acta Petrolei Sinica, 2022, 43(5): 581-594. | |
50 | 刘鹏, 张磊, 王胜奎, 等. 济阳坳陷古近系页岩油运移路径探讨及其石油地质意义[J]. 中国石油大学学报(自然科学版), 2022, 46(6): 89-98. |
LIU Peng, ZHANG Lei, WANG Shengkui, et al. Discussion on migration path of Paleogene shale oil in Jiyang Depression and its petroleum geological significance[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(6): 89-98. | |
51 | 杨勇. 济阳陆相断陷盆地页岩油富集高产规律[J]. 油气地质与采收率, 2023, 30(1): 1-20. |
YANG Yong. Enrichment and high production regularities of shale oil reservoirs in continental rift basin: A case study of Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 1-20. | |
52 | 李文浩, 卢双舫, 王民, 等. 基于扫描电镜大视域拼接技术定量表征致密储层微观非均质性[J]. 石油与天然气地质, 2022, 43(6): 1497-1504. |
LI Wenhao, LU Shuangfang, WANG Min, et al. Quantitative characterization of micro heterogeneity of tight reservoirs by large-view FE-SEM splicing technology[J]. Oil & Gas Geology, 2022, 43(6): 1497-1504. | |
53 | 冯子辉, 霍秋立, 曾花森, 等. 松辽盆地古龙页岩有机质组成与有机质孔形成演化[J]. 大庆石油地质与开发, 2021, 40(5): 40-55. |
FENG Zihui, HUO Qiuli, ZENG Huasen, et al. Organic matter compositions and organic pore evolution in Gulong shale of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 40-55. | |
54 | 李进步, 王民, 卢双舫, 等. 页岩吸附油定量评价模型——以松辽盆地北部白垩系青山口组一段为例[J]. 石油勘探与开发, 2023, 50(5): 990-1002. |
LI Jinbu, WANG Min, LU Shuangfang, et al. Quantitative evaluation model of shale oil adsorption: A case study of the first member of Cretaceous Qingshankou Formation in northern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2023, 50(5): 990-1002. | |
55 | CUI Jingwei, ZHANG Zhongyi, LIU Guanglin, et al. Breakthrough pressure anisotropy and intra-source migration model of crude oil in shale[J]. Marine and Petroleum Geology, 2022, 135: 105433. |
56 | UNGERER P, COLLELL J, YIANNOURAKOU M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity[J]. Energy & Fuels, 2015, 29(1): 91-105. |
57 | 王森, 冯其红, 查明, 等. 页岩有机质孔缝内液态烷烃赋存状态分子动力学模拟[J]. 石油勘探与开发, 2015, 42(6): 772-778. |
WANG Sen, FENG Qihong, ZHA Ming, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter[J]. Petroleum Exploration and Development, 2015, 42(6): 772-778. | |
58 | ZHAO Tianyi, LI Xiangfang, ZHAO Huawei, et al. Molecular simulation of adsorption and thermodynamic properties on type II kerogen: Influence of maturity and moisture content[J]. Fuel, 2017, 190: 198-207. |
59 | GUO Fugui, WANG Sen, FENG Qihong, et al. Adsorption and absorption of supercritical methane within shale kerogen slit[J]. Journal of Molecular Liquids, 2020, 320(Part A): 114364. |
60 | LI Jinbu, WANG Min, JIANG Chunqing, et al. Sorption model of lacustrine shale oil: Insights from the contribution of organic matter and clay minerals[J]. Energy, 2022, 260: 125011. |
61 | YUAN Ming, PAN Songqi, JING Zhenhua, et al. Geochemical distortion on shale oil maturity caused by oil migration: Insights from the non-hydrocarbons revealed by FT-ICR MS[J]. International Journal of Coal Geology, 2023, 266: 104142. |
62 | HAN Yuanjia, MAHLSTEDT N, HORSFIELD B. The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion[J]. AAPG Bulletin, 2015, 99(12): 2173-2202. |
63 | 蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. |
JIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology and Experiment, 2016, 38(6): 842-849. | |
64 | ROMERO-SARMIENTO M F. A quick analytical approach to estimate both free versus sorbed hydrocarbon contents in liquid-rich source rocks[J]. AAPG Bulletin, 2019, 103(9): 2031-2043. |
65 | 王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4): 789-802. |
WANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802. | |
66 | LI Jinbu, JIANG Chunqing, WANG Min, et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: A new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311. |
67 | ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. 1D and 2D nuclear magnetic resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks[J]. Marine and Petroleum Geology, 2020, 114: 104210. |
68 | 张林晔, 包友书, 李钜源, 等. 湖相页岩油可动性——以渤海湾盆地济阳坳陷东营凹陷为例[J]. 石油勘探与开发, 2014, 41(6): 641-649. |
ZHANG Linye, BAO Youshu, LI Juyuan, et al. Movability of lacustrine shale oil: A case study of Dongying Sag, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2014, 41(6): 641-649. | |
69 | 包友书, 张林晔, 张金功, 等. 渤海湾盆地东营凹陷古近系页岩油可动性影响因素[J]. 石油与天然气地质, 2016, 37(3): 408-414. |
BAO Youshu, ZHANG Linye, ZHANG Jingong, et al. Factors influencing mobility of Paleogene shale oil in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(3): 408-414. | |
70 | LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al. Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China[J]. International Journal of Coal Geology, 2019, 204: 130-143. |
71 | HU Tao, PANG Xiongqi, JIANG Fujie, et al. Movable oil content evaluation of lacustrine organic-rich shales: Methods and a novel quantitative evaluation model[J]. Earth-Science Reviews, 2021, 214: 103545. |
72 | ALHARTHY N S, NGUYEN T N, TEKLU T W, et al. Multiphase compositional modeling in small-scale pores of unconventional shale reservoirs[C]//SPE Annual Technical Conference and Exhibition. London: SPE, 2013: SPE-166306-MS. |
73 | ZHANG Kaiqiang, JIA Na, LI Songyan, et al. Thermodynamic phase behaviour and miscibility of confined fluids in nanopores[J]. Chemical Engineering Journal, 2018, 351: 1115-1128. |
74 | ZHONG Junjie, ZHAO Yinuo, LU Chang, et al. Nanoscale phase measurement for the shale challenge: Multicomponent fluids in multiscale volumes[J]. Langmuir, 2018, 34(34): 9927-9935. |
75 | SONG Yilei, SONG Zhaojie, GUO Jia, et al. Confinement effect on the fluid phase behavior and flow in shale oil reservoirs[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. London: SPE, 2020: URTEC-2020-3135-MS. |
76 | SONG Zhaojie, SONG Yilei, GUO Jia, et al. Effect of nanopore confinement on fluid phase behavior and production performance in shale oil reservoir[J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1463-1472. |
77 | 宁正福, 王波, 杨峰, 等. 页岩储集层微观渗流的微尺度效应[J]. 石油勘探与开发, 2014, 41(4): 445-452. |
NING Zhengfu, WANG Bo, YANG Feng, et al. Microscale effect of microvadose in shale reservoirs[J]. Petroleum Exploration and Development, 2014, 41(4): 445-452. | |
78 | LEI Hao, HE Liu, LI Ruishan, et al. Effects of boundary layer and stress sensitivity on the performance of low-velocity and one-phase flow in a shale oil reservoir: Experimental and numerical modeling approaches[J]. Journal of Petroleum Science and Engineering, 2019, 180: 186-196. |
79 | YANG Yongfei, WANG Ke, ZHANG Lei, et al. Pore-scale simulation of shale oil flow based on pore network model[J]. Fuel, 2019, 251: 683-692. |
80 | 董明哲, 李亚军, 桑茜, 等. 页岩油流动的储层条件和机理[J]. 石油与天然气地质, 2019, 40(3): 636-644. |
DONG Mingzhe, LI Yajun, SANG Qian, et al. Reservoir conditions and mechanism of shale oil flow[J]. Oil & Gas Geology, 2019, 40(3): 636-644. | |
81 | HUANG Jingwei, JIN Tianying, CHAI Zhi, et al. Compositional simulation of three-phase flow in mixed-wet shale oil reservoir[J]. Fuel, 2020, 260: 116361. |
82 | ZHU Chaofan, SHENG J J, ETTEHADTAVAKKOL A, et al. Numerical and experimental study of oil transfer in laminated shale[J]. International Journal of Coal Geology, 2020, 217: 103365. |
83 | YANG Yongfei, LIU Jie, YAO Jun, et al. Adsorption behaviors of shale oil in kerogen slit by molecular simulation[J]. Chemical Engineering Journal, 2020, 387: 124054. |
84 | FEI Junsheng, WANG Min, LI Jinbu, et al. Molecular dynamics simulation of adsorption and absorption behavior of shale oil in realistic kerogen slits[J]. Energy & Fuels, 2023, 37(5): 3654-3671. |
85 | LIU Jie, YANG Yongfei, SUN Shuyu, et al. Flow behaviors of shale oil in kerogen slit by molecular dynamics simulation[J]. Chemical Engineering Journal, 2022, 434: 134682. |
86 | LI Jinbu, WANG Min, FEI Junsheng, et al. Determination of in situ hydrocarbon contents in shale oil plays. Part 2: Two-dimensional nuclear magnetic resonance (2D NMR) as a potential approach to characterize preserved cores[J]. Marine and Petroleum Geology, 2022, 145: 105890. |
[1] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[2] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[3] | 金之钧, 张谦, 朱如凯, 董琳, 付金华, 刘惠民, 云露, 刘国勇, 黎茂稳, 赵贤正, 王小军, 胡素云, 唐勇, 白振瑞, 孙冬胜, 李晓光. 中国陆相页岩油分类及其意义[J]. 石油与天然气地质, 2023, 44(4): 801-819. |
[4] | 马克, 侯加根, 董虎, 吴国强, 闫林, 张丽薇. 页岩油储层混合细粒沉积孔喉特征及其对物性的控制作用[J]. 石油与天然气地质, 2022, 43(5): 1194-1205. |
[5] | 沈云琦, 金之钧, 苏建政, 李志明, 牛骏. 中国陆相页岩油储层水平渗透率与垂直渗透率特征[J]. 石油与天然气地质, 2022, 43(2): 378-389. |
[6] | 黎茂稳, 马晓潇, 金之钧, 李志明, 蒋启贵, 吴世强, 李政, 徐祖新. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. |
[7] | 孙莎莎, 董大忠, 李育聪, 王红岩, 施振生, 黄世伟, 昌燕, 拜文华. 四川盆地侏罗系自流井组大安寨段陆相页岩油气地质特征及成藏控制因素[J]. 石油与天然气地质, 2021, 42(1): 124-135. |
[8] | 刘喜武, 刘宇巍, 刘志远, 宋亮, 刘炯, 霍志周, 张金强, 钱恪然, 张颖燕. 陆相页岩油甜点地球物理表征研究进展[J]. 石油与天然气地质, 2019, 40(3): 504-511. |
[9] | 陈祥,王敏,严永新,章新文,罗曦,张永华. 泌阳凹陷陆相页岩油气成藏条件[J]. 石油与天然气地质, 2011, 32(4): 568-576. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||