石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (2): 542-552.doi: 10.11743/ogg20240217
收稿日期:
2023-12-29
修回日期:
2024-03-06
出版日期:
2024-04-30
发布日期:
2024-04-30
通讯作者:
曹鹏
E-mail:jiangtw-tlm@petrochina.com.cn;caop_hz@petrochina.com.cn
第一作者简介:
江同文(1968—),男,博士、教授级高级工程师,石油天然气评价与开发及科研管理。E-mail: jiangtw-tlm@petrochina.com.cn。
Tongwen JIANG1(), Xingliang DENG2, Peng CAO3(), Shaoying CHANG3
Received:
2023-12-29
Revised:
2024-03-06
Online:
2024-04-30
Published:
2024-04-30
Contact:
Peng CAO
E-mail:jiangtw-tlm@petrochina.com.cn;caop_hz@petrochina.com.cn
摘要:
塔里木盆地走滑断裂控制的超深油气藏是近年来中国油气勘探开发最重要领域之一,但目前该类型油藏的储集空间类型并不清楚,不同储集空间类型与注水效果关系不明确,严重制约了富满油田的高效开发。在充分分析野外露头、岩心、成像测井以及动态监测资料的基础上,系统剖析了断控破碎体的3种主要储集空间类型及其与注水效果的关系。提出了断控破碎体的概念,指出富满油田主要为断控破碎体油藏,研究结果表明:①断裂空腔型储集体主要分布在断裂带的核部,由断层滑动面产状变化引发内部体积调整形成了“空腔”型洞穴。埋藏条件下的储集空间相对较为封闭,内部孔隙空间较大,注水后原油置换率较高,部分油井动用储量的注水采收率可高达93 %。②角砾间孔隙型储集体主要分布在断裂带的核部,由相邻的角砾相互支撑而形成角砾间不规则储集空间类型。该类储集体分布较为均匀,孔隙度中等,单位压降下的产液量较高,但是由于储集空间内部连接并不通畅,注水后置换率较低,需要研究探索构建立体结构井网来提高开发效果。③构造裂缝型储集体主要分布在断裂带的损伤带和过程带,在断层带的两侧和端部发育形成一定宽度的裂缝带。裂缝带周边也会发育少量孔隙,部分区域会形成一定的渗流优势通道,因此注入水的流失量较大,注水效果相对于断裂空腔型储集体较差。研究成果支撑了富满油田上产原油350 × 104 t,可助推注水开发方案和提高采收率方案的优化,对同类型油藏高效开发具有重要的借鉴意义。
中图分类号:
1 | 田军, 杨海军, 朱永峰, 等. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J]. 石油学报, 2021, 42(8): 971-985. |
TIAN Jun, YANG Haijun, ZHU Yongfeng, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman Oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(8): 971-985. | |
2 | 鲁新便, 杨敏, 汪彦, 等.塔里木盆地北部“层控”与“断控”型油藏特征——以塔河油田奥陶系油藏为例[J]. 石油实验地质, 2018, 40(4): 461-469. |
LU Xinbian, YANG Min, WANG Yan, et al. Geological characteristics of “strata-bound” and “fault-controlled” reservoirs in the northern Tarim Basin: Taking the Ordovician reservoirs in the Tahe Oil Field as an example[J]. Petroleum Geology and Experiment, 2018, 40(4): 461-469. | |
3 | 侯少勇, 段霈泽, 赫庆庆, 等. 富满油田超深碳酸盐岩油气藏走滑断裂带有利储层发育区研究[J]. 海洋石油, 2023, 43(1): 10-15. |
HOU Shaoyong, DUAN Peize, HE Qingqing, et al. Study on the favorable reservoir area of strike-slip fault zone of ultra-deep carbonate reservoir in Fuman Oilfield[J]. Offshore Oil, 2023, 43(1): 10-15. | |
4 | 张银涛, 孙冲, 王轩, 等. 哈拉哈塘油田走滑断裂带控储成藏规律初探[J]. 西南石油大学学报(自然科学版), 2020, 42(1): 10-18. |
ZHANG Yintao, SUN Chong, WANG Xuan, et al. Reservoir formation patterns in the strike-slip fault zone of the Halahatang Oilfield[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(1): 10-18. | |
5 | 王清华. 塔里木盆地17号走滑断裂带北段差异变形与演化特征[J]. 现代地质, 2023, 37(5): 1136-1145. |
WANG Qinghua. Differential deformation and evolution characteristics of the No.17 strike-slip fault zone in the Tarim Basin[J]. Geoscience, 2023, 37(5): 1136-1145. | |
6 | 孙永革, 孔丽姝, 路清华, 等. 塔里木盆地古城墟隆起顺南1井古油藏热裂解过程的分子碳同位素地球化学记录[J]. 石油实验地质, 2023, 45(5): 904-911. |
SUN Yongge, KONG Lishu, LU Qinghua, et al. Molecular carbon isotopic geochemistry records of thermal cracking in the palaeo-reservoir of Well Shunnan 1 in Guchengxu Uplift, Tarim Basin[J]. Petroleum Geology and Experiment, 2023, 45(5): 904-911. | |
7 | 宋兴国, 陈石, 谢舟, 等. 塔里木盆地富满油田东部走滑断裂发育特征与油气成藏[J]. 石油与天然气地质, 2023, 44(2): 335-349. |
SONG Xingguo, CHEN Shi, XIE Zhou, et al. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman Oilfield, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(2): 335-349. | |
8 | 刘强, 张银涛, 陈石, 等. 塔里木盆地走滑断裂发育演化特征精细解析及其地质意义: 以富满油田FⅠ17断裂为例[J]. 现代地质, 2023, 37(5): 1123-1135. |
LIU Qiang, ZHANG Yintao, CHEN Shi, et al. Development and evolution characteristics of strike-slip faults in Tarim Basin and its geological significance: A case study of FⅠ17 fault in Fuman Oilfield[J]. Geoscience, 2023, 37(5): 1123-1135. | |
9 | 张红波, 周雨双, 沙旭光, 等. 塔里木盆地顺北5号走滑断裂隆起段发育特征与演化机制[J]. 石油与天然气地质, 2023, 44(2): 321-334. |
ZHANG Hongbo, ZHOU Yushuang, SHA Xuguang, et al. Development characteristics and evolution mechanism of the uplifted segment of the No. 5 strike-slip fault zone in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(2): 321-334. | |
10 | 邓兴梁, 闫婷, 张银涛, 等. 走滑断裂断控碳酸盐岩油气藏的特征与井位部署思路——以塔里木盆地为例[J]. 天然气工业, 2021, 41(3): 21-29. |
DENG Xingliang, YAN Ting, ZHANG Yintao, et al. Characteristics and well location deployment ideas of strike-slip fault controlled carbonate oil and gas reservoirs: A case study of the Tarim Basin[J]. Natural Gas Industry, 2021, 41(3): 21-29. | |
11 | 段太忠, 张文彪, 何治亮, 等. 塔里木盆地顺北油田超深断溶体深度学习地质建模方法[J]. 石油与天然气地质, 2023, 44(1): 203-212. |
DUAN Taizhong, ZHANG Wenbiao, HE Zhiliang, et al. Deep learning-based geological modeling of ultra-deep fault-karst reservoirs in Shunbei Oilfield, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1): 203-212. | |
12 | 韩俊, 董少峰, 尤东华, 等. 塔里木盆地顺南地区深层碳酸盐岩热液溶蚀及其油气勘探意义——以顺南蓬1井为例[J]. 石油实验地质, 2023, 45(4): 770-779. |
HAN Jun, DONG Shaofeng, YOU Donghua, et al. Hydrothermal dissolution of deep-buried carbonate rocks and its significance for hydrocarbon exploration in Shunnan area, the Tarim Basin: Taking Well Peng-1 in Shunnan area as a case[J]. Petroleum Geology and Experiment, 2023, 45(4): 770-779. | |
13 | DENG Xingliang, CHEN Jiajun, CAO Peng, et al. Segmentation and lateral growth of intracratonic strike-slip faults in the northern Tarim Basin, NW China: Influences on Ordovician fault-controlled carbonate reservoirs[J]. Frontiers in Earth Science, 2023, 11: 1255162. |
14 | 邓兴梁, 闫婷, 张银涛, 等. 走滑断裂断控碳酸盐岩油气藏的特征与井位部署思路——以塔里木盆地为例[J]. 天然气工业, 2021, 41(3): 21-29. |
DENG Xingliang, YAN Ting, ZHANG Yintao, et al. Characteristics and well location deployment ideas of strike-slip fault controlled carbonate oil and gas reservoirs: A case study of the Tarim Basin[J]. Natural Gas Industry, 2021, 41(3): 21-29. | |
15 | HU Xiangyang, ZHENG Wenbo, ZHAO Xiangyuan, et al. Quantitative characterization of deep fault-karst carbonate reservoirs: A case study of the Yuejin Block in the Tahe Oilfield[J]. Energy Geoscience, 2023, 4(3): 100153. |
16 | 田军, 杨海军, 朱永峰, 等. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J]. 石油学报, 2021, 42(8): 971-985. |
TIAN Jun, YANG Haijun, ZHU Yongfeng, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman Oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(8): 971-985. | |
17 | 张文彪, 段太忠, 赵华伟, 等. 断控岩溶体系空间结构差异性与三维建模——以顺北1号断裂带为例[J]. 科学技术与工程, 2021, 21(28): 12094-12108. |
ZHANG Wenbiao, DUAN Taizhong, ZHAO Huawei, et al. Hierarchical characteristics and 3D modeling of fault-controlled paleokarst systems: A case study of Shunbei 1 strike-slip fault zone[J]. Science Technology and Engineering, 2021, 21(28): 12094-12108. | |
18 | 胡文革, 邹宁, 李丹丹, 等. 断溶体油藏油源深度对井温分布影响的数值模拟[J]. 物探与化探, 2020, 44(4): 748-755. |
HU Wenge, ZOU Ning, LI Dandan, et al. The numerical simulation for the influence of reservoir depth on well temperature in karstic-fault reservoir[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 748-755. | |
19 | 丁志文, 汪如军, 陈方方, 等. 断溶体油气藏成因、成藏及油气富集规律——以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例[J]. 石油勘探与开发, 2020, 47(2): 286-296. |
DING Zhiwen, WANG Rujun, CHEN Fangfang, et al. Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang Oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 2020, 47(2): 286-296. | |
20 | 郑晓丽, 安海亭, 王祖君, 等. 哈拉哈塘地区走滑断裂与断溶体油藏特征[J]. 新疆石油地质, 2019, 40(4): 449-455. |
ZHENG Xiaoli, AN Haiting, WANG Zujun, et al. Characteristics of strike-slip faults and fault-karst carbonate reservoirs in Halahatang area, Tarim Basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 449-455. | |
21 | 张银涛, 孙冲, 王轩, 等. 哈拉哈塘油田走滑断裂带控储成藏规律初探[J]. 西南石油大学学报(自然科学版), 2020, 42(1): 10-18. |
ZHANG Yintao, SUN Chong, WANG Xuan, et al. Reservoir formation patterns in the strike-slip fault zone of the Halahatang Oilfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(1): 10-18. | |
22 | 张文彪, 段太忠, 李蒙, 等. 塔河油田托甫台区奥陶系断溶体层级类型及表征方法[J]. 石油勘探与开发, 2021, 48(2): 314-325. |
ZHANG Wenbiao, DUAN Taizhong, LI Meng, et al. Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai, Tahe Oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(2): 314-325. | |
23 | 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. |
JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area,Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. | |
24 | 韩永科, 张志遥, 陈玮岩, 等. 塔里木盆地跃满地区超深油藏成藏地质条件与演化过程[J]. 天然气地球科学, 2021, 32(11): 1634-1645. |
HAN Yongke, ZHANG Zhiyao, CHEN Weiyan, et al. Geological conditions and evolution for the accumulation of the ultra-deep oil pools in the Yueman area, Tarim Basin[J]. Natural Gas Geoscience, 2021, 32(11): 1634-1645. | |
25 | 黄诚, 云露, 曹自成, 等. 塔里木盆地顺北地区中-下奥陶统 “断控” 缝洞系统划分与形成机制[J]. 石油与天然气地质, 2022, 43(1): 54-68. |
HUANG Cheng, YUN Lu, CAO Zicheng, et al. Division and formation mechanism of fault-controlled fracture-vug system of the Middle-to-Lower Ordovician, Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 54-68. | |
26 | FOSSEN H. Structural geology[M]. Cambridge: Cambridge University Press, 2016. |
27 | CHESTER F M, LOGAN J M. Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California[J]. Pure and Applied Geophysics, 1986, 124(1): 79-106. |
28 | FAULKNER D R, MITCHELL T M, JENSEN E, et al. Scaling of fault damage zones with displacement and the implications for fault growth processes[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B5): B05403. |
29 | CLAUSEN J A, GABRIELSEN R H, JOHNSEN E, et al. Fault architecture and clay smear distribution. Examples from field studies and drained ring-shear experiments[J]. Norsk Geologisk Tidsskrift, 2003, 83(2): 131-146. |
30 | VERMILYE J M, SCHOLZ C H. The process zone: A microstructural view of fault growth[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B6): 12223-12237. |
31 | CHILDS C, MANZOCCHI T, WALSH J J, et al. A geometric model of fault zone and fault rock thickness variations[J]. Journal of Structural Geology, 2009, 31(2): 117-127. |
32 | FAULKNER D R, LEWIS A C, RUTTER E H. On the internal structure and mechanics of large strike-slip fault zones: Field observations of the Carboneras fault in southeastern Spain[J]. Tectonophysics, 2003, 367(3/4): 235-251. |
33 | FOSSEN H, SCHULTZ R A, SHIPTON Z K, et al. Deformation bands in sandstone: A review[J]. Journal of the Geological Society, 2007, 164(4): 755-769. |
34 | 曹鹏, 常少英, 戴传瑞, 等. 缝洞型碳酸盐岩油藏注水替油适应性浅析——以轮古西潜山油藏为例[J]. 石油天然气学报, 2014, 36(3): 121-125. |
CAO Peng, CHANG Shaoying, DAI Chuanrui, et al. Brief analysis on water-flooding development of fractured-cavity type of carbonate reservoirs——By taking Lunguxi buried hill reservoir for example[J]. Journal of Oil and Gas Technology, 2014, 36(3): 121-125. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[8] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[9] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[10] | 屈海洲, 郭新宇, 徐伟, 李文皓, 唐松, 邓雅霓, 何仕鹏, 张云峰, 张兴宇. 碳酸盐岩微孔隙的分类、成因及对岩石物理性质的影响[J]. 石油与天然气地质, 2023, 44(5): 1102-1117. |
[11] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[12] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
[13] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[14] | 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜—大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. |
[15] | 李斌, 赵星星, 邬光辉, 韩剑发, 关宝珠, 沈春光. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质, 2023, 44(2): 308-320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||