石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (2): 427-442.doi: 10.11743/ogg20250207
马桂丽1,2(
), 陈君青1,2(
), 岳长涛1,2, 马跃1,2, 王玉莹1,2, 庞宏3, 姜福杰2,3, 火勋港1,2
收稿日期:2024-06-29
修回日期:2025-01-09
出版日期:2025-04-30
发布日期:2025-04-27
通讯作者:
陈君青
E-mail:maglgreat@163.com;cjq7745@163.com
第一作者简介:马桂丽(1986—),女,博士研究生,新能源化工、页岩生烃理论与资源评价。E‑mail: maglgreat@163.com。
基金项目:
Guili MA1,2(
), Junqing CHEN1,2(
), Changtao YUE1,2, Yue MA1,2, Yuying WANG1,2, Hong PANG3, Fujie JIANG2,3, Xungang HUO1,2
Received:2024-06-29
Revised:2025-01-09
Online:2025-04-30
Published:2025-04-27
Contact:
Junqing CHEN
E-mail:maglgreat@163.com;cjq7745@163.com
摘要:
从分子尺度探讨低熟页岩干酪根结构及生烃特征,揭示其生烃路径和生烃模式对低熟页岩干酪根生烃研究及页岩油勘探的重要意义。通过元素分析、固体碳核磁共振谱(13C NMR)、X射线光电子能谱(XPS)和傅里叶变换红外光谱(FTIR)等测试分析,研究了辽河坳陷西部凹陷沙河街组四段低熟页岩干酪根的杂原子形态、碳骨架结构、脂肪族和芳香族官能团等特征,构建了化学式为C188H310O14N4S的干酪根二维分子结构模型。结果表明:该干酪根分子具有脂肪族含量占比高(73.40 %)、芳香族含量占比低和脂肪链较长(亚甲基链碳数为5.04)的特征。干酪根分子的热解生烃反应分子动力学(ReaxFF MD)模拟显示,气态烃(C1—C4)质量占比在3 500 K温度下可高达41.32 %,轻油组分(C5—C13)质量占比在3 300 K温度下高达20.75 %,重油组分(C14—C39)质量占比在2 800 K温度下高达30.22 %,干酪根热解生烃转化率高达61.67 %。页岩干酪根生烃过程经历了结构变化、弱键断裂、强键断裂、二次裂解和缩聚反应等阶段,发生了脂肪族杂原子断键和碳-氢原子断键、芳香族杂原子断键和碳-氢原子断键及芳环脱氢缩聚反应。
中图分类号:
表2
辽河坳陷西部凹陷曙光地区页岩干酪根中碳、氧、氮和硫的存在形态及相对含量"
| 元素XPS图谱峰 | 官能团 | 归属结构 | 结合能/eV | 相对面积/% |
|---|---|---|---|---|
| C1s | 脂肪族和芳香族碳 | C=C,C—C,C—H | 284.80 | 87.20 |
| 与醚键、羟基相连的碳 | C—O,C—OH | 286.36 | 9.29 | |
| 羰基碳 | O=C | 287.96 | 2.35 | |
| 羧基碳 | O=C—O | 289.26 | 1.16 | |
| O1s | 羰基氧 | C=O | 530.20 | 0.86 |
| 碳-氧单键氧 | C—O | 532.36 | 95.98 | |
| 羧基氧 | COOH | 534.10 | 3.16 | |
| N1s | 吡啶氮 | ![]() | 399.89 | 94.56 |
| 吡咯氮 | ![]() | 401.90 | 5.44 | |
| S2p | 脂肪族硫 | C=S | 161.65 | 24.28 |
| 噻吩硫 | ![]() | 163.59 | 14.68 | |
| 亚砜硫 | S=O | 168.74 | 61.04 |
表3
辽河坳陷西部凹陷曙光地区页岩有机质中碳原子化学位移的结构归属及相对含量"
| 碳原子类型 | 化学位移/10-6 | 归属 | 表达式 | 符号 | 相对含量/% |
|---|---|---|---|---|---|
| 脂肪族碳 | 3 ~ 4 | 脂肪族终端甲基碳1 | CH3—CH3 | 6.40 | |
| 14 ~ 16 | 脂肪族终端甲基碳2 | R—CH3 | 18.44 | ||
| 16 ~ 22 | 芳香族甲基碳 | Ar—CH3 | 27.79 | ||
| 22 ~ 36 | 脂肪族亚甲基碳 | CH2—CH3 | 18.58 | ||
| 36 ~ 50 | 次甲基碳和季碳 | CH,C | 3.99 | ||
| 芳香族碳 | 100 ~ 110 | 质子化芳香族碳1 | Ar—H | 3.65 | |
| 111 ~ 118 | 质子化芳香族碳2 | Ar—H | 14.03 | ||
| 123 ~ 129 | 质子化芳香族碳3 | Ar—H | 4.74 | ||
| 137 ~ 148 | 脂肪族取代基碳 | Ar—C | 2.38 |
表4
辽河坳陷西部凹陷曙光地区红外光谱主要吸收峰的结构归属及相对含量"
| 所属区域 | 波数范围/cm-1 | 峰位波数/cm-1 | 归属结构 | 峰面积 | 相对含量/% |
|---|---|---|---|---|---|
芳香烃 区域 | 900 ~ 700 | 700.61 | 3H | 5.87 | 10.35 |
| 724.87 | 3H | 27.43 | 48.35 | ||
| 760.65 | 3H | 2.01 | 3.54 | ||
| 826.85 | 2H | 15.94 | 28.08 | ||
| 877.44 | 1H | 5.50 | 9.68 | ||
| 含氧官能团区域 | 1 800 ~ 1 000 | 1 047.50 | 烷基醚C—O | 29.01 | 1.67 |
| 1 130.39 | 醇羟基C—OH | 55.37 | 3.18 | ||
| 1 253.28 | 酚羟基Ar—OH | 412.78 | 23.74 | ||
| 1 311.77 | 芳香醚C—O | 52.43 | 3.01 | ||
| 1 374.85 | 芳香结构上的CH3 | 182.96 | 10.52 | ||
| 1 451.76 | 烷基上的CH,CH2 | 263.83 | 15.17 | ||
| 1 589.21 | 芳香结构C=C | 610.73 | 35.15 | ||
| 1 708.28 | 羧基COOH | 131.46 | 7.56 | ||
脂肪烃 区域 | 3 000 ~ 2 800 | 2 849.38 | 对称的—CH2— | 267.91 | 24.77 |
| 2 871.39 | 对称的—CH3— | 79.33 | 7.33 | ||
| 2 922.15 | 反对称的—CH2— | 631.79 | 58.41 | ||
| 2 963.82 | 反对称的—CH3— | 102.66 | 9.49 | ||
| 羟基区域 | 3 600 ~ 3 100 | 3 338.26 | 醚—OH | 312.46 | 70.07 |
| 3 464.70 | 氢键缔合的—OH(或—NH),酚类 | 133.48 | 29.93 |
| 1 | 邹才能, 杨智, 张国生, 等. 非常规油气地质学理论技术及实践[J]. 地球科学, 2023, 48(6): 2376-2397. |
| ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Theory, technology and practice of unconventional petroleum geology[J]. Earth Science, 2023, 48(6): 2376-2397. | |
| 2 | 刘翰林, 邹才能, 邱振, 等. 陆相黑色页岩沉积环境及有机质富集机制——以鄂尔多斯盆地长7段为例[J]. 沉积学报, 2023, 41(6): 1810-1829. |
| LIU Hanlin, ZOU Caineng, QIU Zhen, et al. Sedimentary depositional environment and organic matter enrichment mechanism of lacustrine black shales: A case study of the Chang 7 member in the Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1810-1829. | |
| 3 | 王建, 郭秋麟, 赵晨蕾, 等. 中国主要盆地页岩油气资源潜力及发展前景[J]. 石油学报, 2023, 44(12): 2033-2044. |
| WANG Jian, GUO Qiulin, ZHAO Chenlei, et al. Potentials and prospects of shale oil-gas resources in major basins of China[J]. Acta Petrolei Sinica, 2023, 44(12): 2033-2044. | |
| 4 | ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-11. |
| 5 | HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 877-887. |
| 6 | 金之钧, 朱如凯, 梁新平, 等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发, 2021, 48(6): 1276-1287. |
| JIN Zhijun, ZHU Rukai, LIANG Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1276-1287. | |
| 7 | 郭旭升, 马晓潇, 黎茂稳, 等. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
| GUO Xusheng, MA Xiaoxiao, LI Maowen, et al. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins[J]. Oil & Gas Geology, 2023, 44(6): 1333-1349. | |
| 8 | TONG Jianhui, JIANG Xiumin, HAN Xiangxin, et al. Evaluation of the macromolecular structure of Huadian oil shale Kerogen using molecular modeling[J]. Fuel, 2016, 181: 330-339. |
| 9 | MIKNIS F P, NETZEL D A, SMITH J W, et al. 13C NMR measurements of the genetic potentials of oil shales[J]. Geochimica et Cosmochimica Acta, 1982, 46(6): 977-984. |
| 10 | QIN Kuangzong, CHEN Deyu, LI Zhanguang. A new method to estimate the oil and gas potentials of coals and kerogens by solid state 13C NMR spectroscopy[J]. Organic Geochemistry, 1991, 17(6): 865-872. |
| 11 | BEHAR F, VANDENBROUCKE M. Chemical modelling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24. |
| 12 | LIU Yu, LIU Shimin, ZHANG Rui, et al. The molecular model of Marcellus shale kerogen: Experimental characterization and structure reconstruction[J]. International Journal of Coal Geology, 2021, 246: 103833. |
| 13 | WANG Qing, PAN Shuo, BAI Jingru, et al. Experimental and dynamics simulation studies of the molecular modeling and reactivity of the Yaojie oil shale kerogen[J]. Fuel, 2018, 230: 319-330. |
| 14 | 刘向君, 罗丹序, 熊健, 等. 龙马溪组页岩干酪根平均分子结构模型的构建[J]. 化工进展, 2017, 36(2): 530-537. |
| LIU Xiangjun, LUO Danxu, XIONG Jian, et al. Construction of the average molecular modeling of the kerogen from the Longmaxi Formation[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 530-537. | |
| 15 | SHI Kanyuan, CHEN Junqing, PANG Xiongqi, et al. Average molecular structure model of shale kerogen: Experimental characterization, structural reconstruction, and pyrolysis analysis[J]. Fuel, 2024, 355: 129474. |
| 16 | TISSOT B P, WELTE D H. Mathematical models: A quantitative approach to the evaluation of oil and gas prospects[M]//TISSOT B P, WELTE D H. Petroleum Formation and Occurrence. Berlin: Springer, 1978: 500-521. |
| 17 | 张谦, 金之钧, 朱如凯, 等. 岩石热解方法应用于页岩油气研究需注意的几个问题[J]. 石油与天然气地质, 2023, 44(4): 1020-1032. |
| ZHANG Qian, JIN Zhijun, ZHU Rukai, et al. Remarkable issues of Rock-Eval pyrolysis in the assessment of shale oil/gas[J]. Oil & Gas Geology, 2023, 44(4): 1020-1032. | |
| 18 | TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin: Springer, 1984: 1-554. |
| 19 | SALMON E, VAN DUIN A C T, LORANT F, et al. Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195-1209. |
| 20 | LIU Xiaoping, ZHAN Jinhui, LAI Dengguo, et al. Initial pyrolysis mechanism of oil shale kerogen with reactive molecular dynamics simulation[J]. Energy & Fuels, 2015, 29(5): 2987-2997. |
| 21 | QIAN Yanan, ZHAN Jinhui, LAI Dengguo, et al. Primary understanding of non-isothermal pyrolysis behavior for oil shale kerogen using reactive molecular dynamics simulation[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12093-12100. |
| 22 | ZHONG Qifan, MAO Qiuyun, XIAO Jin, et al. ReaxFF simulations of petroleum coke sulfur removal mechanisms during pyrolysis and combustion[J]. Combustion and Flame, 2018, 198: 146-157. |
| 23 | ZHANG Zhijun, CHAI Jun, ZHANG Hanyu, et al. Structural model of Longkou oil shale Kerogen and the evolution process under steam pyrolysis based on ReaxFF molecular dynamics simulation[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(2): 252-265. |
| 24 | HAN Qiuya, LI Meijun, LIU Xiaoqiang, et al. A maturation scale for molecular simulation of Kerogen thermal degradation[J]. Organic Geochemistry, 2023, 175: 104507. |
| 25 | ZHANG Zhijun, GUO Liting, ZHANG Hanyu, et al. Comparing product distribution and desulfurization during direct pyrolysis and hydropyrolysis of Longkou oil shale kerogen using reactive MD simulations[J]. International Journal of Hydrogen Energy, 2019, 44(47): 25335-25346. |
| 26 | UNGERER P, COLLELL J, YIANNOURAKOU M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity[J]. Energy & Fuels, 2015, 29(1): 91-105. |
| 27 | WU Ziheng, XU Zhiguo. Experimental and molecular dynamics investigation on the pyrolysis mechanism of Chang 7 type-Ⅱ oil shale kerogen[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109878. |
| 28 | 王民, 余昌琦, 费俊胜, 等. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452. |
| WANG Min, YU Changqi, FEI Junsheng, et al. Molecular dynamics simulation of shale oil adsorption in kerogen and its implications[J]. Oil & Gas Geology, 2023, 44(6): 1442-1452. | |
| 29 | 宋兵, 王波, 刘兴周, 等. 辽河西部凹陷曙北地区沙四段薄砂层成因类型及分布规律[J]. 地质与资源, 2021, 30(6): 698-706. |
| SONG Bing, WANG Bo, LIU Xingzhou, et al. Genetic types and distribution rules of thin sand layers in the fourth member of Shahejie Formation in Shubei area of the western sag, Liaohe Depression[J]. Geology and Resources, 2021, 30(6): 698-706. | |
| 30 | 李毅, 方石, 孙平昌, 等. 辽河盆地西部凹陷沙河街组古近系页岩气成藏地质条件研究[J]. 地质与资源, 2017, 26(2): 140-146. |
| LI Yi, FANG Shi, SUN Pingchang, et al. Geological conditions of shale gas accumulation of Paleogene Shahejie Formation in the western sag of Liaohe Basin[J]. Geology and Resources, 2017, 26(2): 140-146. | |
| 31 | 黄潇, 张金川, 李晓光, 等. 陆相页岩孔隙类型、特征及油气共聚过程探讨——以辽河坳陷西部凹陷为例[J]. 天然气地球科学, 2015, 26(7): 1422-1432. |
| HUANG Xiao, ZHANG Jinchuan, LI Xiaoguang, et al. Pore types and characteristics of continental shale and discussion on the process of oil and gas accumulation: A case study of the western sag of Liaohe Depression[J]. Natural Gas Geoscience, 2015, 26(7): 1422-1432. | |
| 32 | ZHANG Lanjun, LI Zenghua, HE Wenjing, et al. Study on the change of organic sulfur forms in coal during low-temperature oxidation process[J]. Fuel, 2018, 222: 350-361. |
| 33 | LI Lin, LI Zhihao, MA Chuandong, et al. Molecular dynamics simulations of nonionic surfactant adsorbed on subbituminous coal model surface based on XPS analysis[J]. Molecular Simulation, 2019, 45(9): 736-742. |
| 34 | DING Dianshi, LIU Guijian, FU Biao. Influence of carbon type on carbon isotopic composition of coal from the perspective of solid-state 13C NMR[J]. Fuel, 2019, 245: 174-180. |
| 35 | WANG Qing, YE Jiangbin, YANG Hongyang, et al. Chemical composition and structural characteristics of oil shales and their kerogens using Fourier transform infrared (FTIR) spectroscopy and solid-state 13C nuclear magnetic resonance (NMR)[J]. Energy & Fuels, 2016, 30(8): 6271-6280. |
| 36 | FENG Yesu, LE DOAN T V, POMERANTZ A E. The chemical composition of bitumen in pyrolyzed green river oil shale: Characterization by 13C NMR spectroscopy[J]. Energy & Fuels, 2013, 27(12): 7314-7323. |
| 37 | YANG Fan, HOU Yucui, WU Weize, et al. A new insight into the structure of Huolinhe lignite based on the yields of benzene carboxylic acids[J]. Fuel, 2017, 189: 408-418. |
| 38 | WEI Qiang, TANG Yuegang. 13C-NMR study on structure evolution characteristics of high-organic-sulfur coals from typical Chinese areas[J]. Minerals, 2018, 8(2): 49. |
| 39 | 郑庆荣, 曾凡桂, 张世同. 中变质煤结构演化的FT-IR分析[J]. 煤炭学报, 2011, 36(3): 481-486. |
| ZHENG Qingrong, ZENG Fangui, ZHANG Shitong. FT-IR study on structure evolution of middle maturate coals[J]. Journal of China Coal Society, 2011, 36(3): 481-486. | |
| 40 | IBARRA J V, MOLINER R, BONET A J. FT-i.r. investigation on char formation during the early stages of coal pyrolysis[J]. Fuel, 1994, 73(6): 918-924. |
| 41 | 韩峰, 张衍国, 蒙爱红, 等. 云南褐煤结构的FTIR分析[J]. 煤炭学报, 2014, 39(11): 2293-2299. |
| HAN Feng, ZHANG Yanguo, MENG Aihong, et al. FTIR analysis of Yunnan lignite[J]. Journal of China Coal Society, 2014, 39(11): 2293-2299. | |
| 42 | RU Xin, CHENG Zhiqiang, SONG Lihua, et al. Experimental and computational studies on the average molecular structure of Chinese Huadian oil shale kerogen[J]. Journal of Molecular Structure, 2012, 1030: 10-18. |
| 43 | GOLDENBERG M, VREEMAN G, SUN D J, et al. A material-sparing simplified buoyancy method for determining the true density of solids[J]. International Journal of Pharmaceutics, 2023, 635: 122694. |
| 44 | ZHENG Mo, LI Xiaoxia, LIU Jian, et al. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy & Fuels, 2013, 27(6): 2942-2951. |
| 45 | XU Fang, LIU Hui, WANG Qing, et al. ReaxFF-based molecular dynamics simulation of the initial pyrolysis mechanism of lignite[J]. Fuel Processing Technology, 2019, 195: 106147. |
| 46 | 李剑, 马卫, 王义凤, 等. 腐泥型烃源岩生排烃模拟实验与全过程生烃演化模式[J]. 石油勘探与开发, 2018, 45(3): 445-454. |
| LI Jian, MA Wei, WANG Yifeng, et al. Modeling of the whole hydrocarbon-generating process of sapropelic source rock[J]. Petroleum Exploration and Development, 2018, 45(3): 445-454. | |
| 47 | 洪智宾, 吴嘉, 方朋, 等. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168. |
| HONG Zhibin, WU Jia, FANG Peng, et al. Heterogeneity of soluble organic matter in shale and occurrence state of shale oil under nanoconfinement[J]. Lithologic Reservoirs, 2024, 36(6): 160-168. | |
| 48 | 宋书伶, 杨二龙, 沙明宇. 基于分子模拟的页岩油赋存状态影响因素研究[J]. 油气藏评价与开发, 2023, 13(1): 31-38. |
| SONG Shuling, YANG Erlong, SHA Mingyu. Influencing factors of occurrence state of shale oil based on molecular simulation[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 31-38. | |
| 49 | 郭旭升, 胡东风, 俞凌杰, 等. 页岩自封闭性与页岩气保存的微观机理研究[J]. 石油实验地质, 2023, 45(5): 821-831. |
| GUO Xusheng, HU Dongfeng, YU Lingjie, et al. Study on the micro mechanism of shale self-sealing and shale gas preservation[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 821-831. | |
| 50 | SHI Lei, LIU Qingya, GUO Xiaojin, et al. Pyrolysis behavior and bonding information of coal—A TGA study[J]. Fuel Processing Technology, 2013, 108: 125-132. |
| 51 | SHI Lei, LIU Qingya, ZHOU Bin, et al. Interpretation of methane and hydrogen evolution in coal pyrolysis from the bond cleavage perspective[J]. Energy & Fuels, 2017, 31(1): 429-437. |
| [1] | 段金宝, 徐田武, 杨栋栋, 姜振学, 高永涛, 王德波, 李路, 袁波. 渤海湾盆地东濮凹陷洼陷带油气地质新认识与勘探突破[J]. 石油与天然气地质, 2025, 46(2): 377-391. |
| [2] | 李军亮, 王民, 秦峰, 王勇, 魏晓亮, 孟伟, 沈安超, 宋兆京, 余昌琦, 李俊乾, 刘嘉祺. 陆相富碳酸盐页岩纹层组合对页岩油富集的控制作用——以渤海湾盆地济阳坳陷古近系沙河街组页岩为例[J]. 石油与天然气地质, 2025, 46(2): 392-406. |
| [3] | 李卓奕, 谢敏. 渤海湾盆地东濮凹陷潜山油气成藏模式[J]. 石油与天然气地质, 2025, 46(2): 407-426. |
| [4] | 游祖辉, 赵建华, 蒲秀刚, 刘可禹, 张伟, 王志昊, 时战楠, 韩文中, 官全胜, 王纪扬. 渤海湾盆地黄骅坳陷歧北次凹古近系沙河街组三段一亚段页岩含油性控制因素与页岩油富集模式[J]. 石油与天然气地质, 2025, 46(2): 443-461. |
| [5] | 周德华, 杨勇, 王运海, 孙川翔, 郑永旺, 钟安海, 鲁明晶, 张珂. 超临界二氧化碳混合压裂技术机理及应用[J]. 石油与天然气地质, 2025, 46(2): 575-585. |
| [6] | 张倩. 多方法约束的复杂物源示踪[J]. 石油与天然气地质, 2025, 46(2): 599-616. |
| [7] | 任文希, 曾小军, 王光付, 郭建春, 刘彧轩. 陆相页岩有机质-黏土矿物复合孔隙体系中多组分烃类-水混合物赋存的分子模拟[J]. 石油与天然气地质, 2025, 46(1): 304-314. |
| [8] | 周立宏, 陈长伟, 韩国猛, 李宏军, 崔宇, 董晓伟, 宋舜尧, 蒲秀刚, 刘国全, 甘华军. 复杂断陷盆地深层煤岩气地质特征、有利成藏因素及发育模式——以渤海湾盆地大港探区为例[J]. 石油与天然气地质, 2024, 45(6): 1665-1677. |
| [9] | 倪良田, 杜玉山, 蒋龙, 孙红霞, 程紫燕, 刘祖鹏, 钟建华, 曹增辉, 马存飞. 渤海湾盆地济阳坳陷陆相断陷湖盆中-低成熟度页岩“富烃-成储-富集-高产”的理论认识与开发实践[J]. 石油与天然气地质, 2024, 45(5): 1417-1430. |
| [10] | 佟欢, 朱世发, 崔航, 蔡文典, 马立驰. 渤海湾盆地桩海地区古近系沙河街组一段-二段混积岩优质储层特征与控制因素[J]. 石油与天然气地质, 2024, 45(4): 1106-1120. |
| [11] | 刘成龙, 王艳忠, 杨怀宇, 操应长, 王淑萍, 郭超凡, 郭豪, 陈兆祥, 宋林坤, 黄歆媛. 高精度层序约束下三角洲-滩坝沉积体系精细刻画与岩性圈闭分布规律[J]. 石油与天然气地质, 2024, 45(4): 1121-1141. |
| [12] | 李倩文. 渤海湾盆地东营凹陷古近系沙河街组页岩储层润湿性及其主控因素[J]. 石油与天然气地质, 2024, 45(4): 1142-1154. |
| [13] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
| [14] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
| [15] | 娄瑞, 孙永河, 张中巧. 渤海湾盆地渤南低凸起西段低角度正断层分段生长特征及其油气地质意义[J]. 石油与天然气地质, 2024, 45(3): 710-721. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||