石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (5): 1682-1699.doi: 10.11743/ogg20250518
• 方法技术 • 上一篇
杨柳(
), 董广涛, 姜晓宇(
), 李明峻, 公飞, 朱凯, 裴奕杰
收稿日期:2025-02-20
修回日期:2025-04-14
出版日期:2025-10-30
发布日期:2025-10-29
通讯作者:
姜晓宇
E-mail:shidayangliu@cumtb.edu.cn;18801191349@163.com
第一作者简介:杨柳(1987—),男,博士、副教授、博士研究生导师,深部岩体温度-应力-渗流-化学耦合、CO2地质封存与驱煤层气-页岩油气、非常规油气提高采收率。E‑mail: shidayangliu@cumtb.edu.cn。
基金项目:
Liu YANG(
), Guangtao DONG, Xiaoyu JIANG(
), Mingjun LI, Fei GONG, Kai ZHU, Yijie PEI
Received:2025-02-20
Revised:2025-04-14
Online:2025-10-30
Published:2025-10-29
Contact:
Xiaoyu JIANG
E-mail:shidayangliu@cumtb.edu.cn;18801191349@163.com
摘要:
水力压裂是致密砂岩油藏开发的主要方式,研究微观渗流机理及剩余油流动动态对于指导处于高含水阶段的致密油藏开发具有重要意义。为研究压裂液注入过程中的流体运移规律及渗吸-驱替耦合作用机理,基于裂缝-基质型双重介质光刻芯片模型,开展了微流控模型可视化驱油实验。分析研究了在渗吸-驱替耦合作用下的油-水界面运移、油滴剥离以及微观残余油分布微观特征。结果表明:①在压裂液注入双重介质模型后,流动过程兼顾裂隙指进、孔隙-裂隙交互渗吸以及孔隙驱替。注入速度较慢时渗吸作用的主导性较强,对近裂缝区的死孔油波及范围较广。随着注入速度增加,交互渗吸作用减弱,波及范围及采收率逐渐降低,采收率主要由孔隙内的驱替作用贡献。②当添加表面活性剂后,压裂液对油滴和壁面残余油簇的剥离作用增强,同时添加表面活性剂后液体对残余油的击打促排效果显著,壁面残余油被大量剥离。当流体突破后,在稳定驱替阶段也会持续剥离壁面残余油,极大地增强了驱油效果。③渗吸和驱替过程中,因为壁面的不同粗糙度以及不同孔隙体间流速和压力的影响导致存在残余油。根据形状及其分布,残余油分为球状残余油、单壁面膜状残余油、孔喉柱状残余油、双壁面膜状残余油、壁面折柱状残余油和壁间连片状残余油6类,其中柱状和膜状残余油分布的范围较广。
中图分类号:
| [1] | 邹才能, 丁云宏, 卢拥军, 等. “人工油气藏”理论、技术及实践[J]. 石油勘探与开发, 2017, 44(1): 144-154. |
| ZOU Caineng, DING Yunhong, LU Yongjun, et al. Concept, technology and practice of “man-made reservoirs” development[J]. Petroleum Exploration and Development, 2017, 44(1): 144-154. | |
| [2] | BAZAZI P, GATES I D, SANATI NEZHAD A, et al. Silica-based nanofluid heavy oil recovery a microfluidic approach[C]//SPE Canada Heavy Oil Technical Conference, Calgary, 2017. Richardson: Society of Petroleum Engineers, 2017: SPE-185008-MS. |
| [3] | 朱卫红, 周代余, 冯积累, 等. 塔里木油田典型油气藏水平井开发效果评价[J]. 石油勘探与开发, 2010, 37(6): 716-725. |
| ZHU Weihong, ZHOU Daiyu, FENG Jilei, et al. Development effect evaluation of horizontal wells in typical oil and gas reservoirs of Tarim Oilfield[J]. Petroleum Exploration and Development, 2010, 37(6): 716-725. | |
| [4] | 杨胜来, 陈浩, 冯积累, 等. 塔里木油田改善注气开发效果的关键问题[J]. 油气地质与采收率, 2014, 21(1): 40-44. |
| YANG Shenglai, CHEN Hao, FENG Jilei, et al. A brief discussion on some scientific issues to improve oil displacement during gas injection, Tarim Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(1): 40-44. | |
| [5] | 王玉丹, 杨玉双, 刘可禹, 等. 非常规油气储集孔隙多尺度连通性的定量显微CT研究[J]. 矿物岩石地球化学通报, 2015, 34(1): 86-92. |
| WANG Yudan, YANG Yushuang, LIU Keyu, et al. Quantitative and multi-scale characterization of pore connections in tight reservoirs with micro-CT and DCM[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 86-92. | |
| [6] | 徐中一, 方思冬. 边界层对致密油藏逆向渗吸的数值模拟[J]. 石油与天然气地质, 2020, 41(3): 638-646. |
| XU Zhongyi, FANG Sidong. Numerical simulation on tight oil reservoir reverse imbibition with boundary layers[J]. Oil & Gas Geology, 2020, 41(3): 638-646. | |
| [7] | 李兆敏, 徐正晓, 李宾飞, 等. 泡沫驱技术研究与应用进展[J]. 中国石油大学学报(自然科学版), 2019, 43(5): 118-127. |
| LI Zhaomin, XU Zhengxiao, LI Binfei, et al. Advances in research and application of foam flooding technology[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(5): 118-127. | |
| [8] | 侯健, 邱茂鑫, 陆努, 等. 采用CT技术研究岩心剩余油微观赋存状态[J]. 石油学报, 2014, 35(2): 319-325. |
| HOU Jian, QIU Maoxin, LU Nu, et al. Characterization of residual oil microdistribution at pore scale using computerized tomography[J]. Acta Petrolei Sinica, 2014, 35(2): 319-325. | |
| [9] | 刘柯, 范洪富, 闫飚, 等. 低渗透油藏渗吸采油机理及技术进展[J]. 油田化学, 2023, 40(1): 182-190. |
| LIU Ke, FAN Hongfu, YAN Biao, et al. Progress in mechanism and technology of imbibition recovery in low permeability reservoirs[J]. Oilfield Chemistry, 2023, 40(1): 182-190. | |
| [10] | SHEN Yinghao, GE Hongkui, LI Caoxiong, et al. Water imbibition of shale and its potential influence on shale gas recovery—a comparative study of marine and continental shale formations[J]. Journal of Natural Gas Science and Engineering, 2016, 35(Part A): 1121-1128. |
| [11] | 孙焕泉, 杨勇, 方吉超, 等. 提高油气田采收率技术协同方法与应用[J]. 石油与天然气地质, 2024, 45(3): 600-608. |
| SUN Huanquan, YANG Yong, FANG Jichao, et al. Technological synergy for enhancing hydrocarbon recovery and its applications[J]. Oil & Gas Geology, 2024, 45(3): 600-608. | |
| [12] | 康万利, 赵晗, 邵硕, 等. 表面活性剂复配提高超低渗油藏渗吸采收率[J]. 油田化学, 2019, 36(4): 667-671. |
| KANG Wanli, ZHAO Han, SHAO Shuo, et al. Surfactant combination for improving the imbibition recovery of ultra-low permeability reservoir[J]. Oilfield Chemistry, 2019, 36(4): 667-671. | |
| [13] | SOHN Y K. Rapid development of gravelly high-density turbidity currents in marine Gilbert-type fan deltas, Loreto Basin, Baja California Sur, Mexico[J]. Sedimentology, 1999, 46(4): 757-761. |
| [14] | 石立华, 魏登峰, 常毓文, 等. 基于微流控模型的致密油藏微观渗吸机制试验[J]. 中国石油大学学报(自然科学版), 2024, 48(2): 99-108. |
| SHI Lihua, WEI Dengfeng, CHANG Yuwen, et al. Experiment on micro imbibition mechanisms of tight reservoirs based on a microfluidic model[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(2): 99-108. | |
| [15] | MI L, JIANG H, PEI Y, et al. Microscopic oil and water percolation characteristic investigation of water flood reservoir in ultrahigh water cut period[C]//SPE Trinidad and Tobago Section Energy Resources Conference, Port of Spain, 2016. Richardson: Society of Petroleum Engineers, 2016: SPE-180864-MS. |
| [16] | 林炳承, 秦建华. 微流控芯片分析化学实验室[J]. 高等学校化学学报, 2009, 30(3): 433-445. |
| LIN Bingcheng, QIN Jianhua. Analysis laboratory based on a microfluidic chip[J]. Chemical Journal of Chinese Universities, 2009, 30(3): 433-445. | |
| [17] | 王鸣川, 王燃, 岳慧, 等. 页岩油微观渗流机理研究进展[J]. 石油实验地质, 2024, 46(1): 98-110. |
| WANG Mingchuan, WANG Ran, YUE Hui, et al. Research progress of microscopic percolation mechanism of shale oil[J]. Petroleum Geology and Experiment, 2024, 46(1): 98-110. | |
| [18] | 曹同锋, 高东华, 李占东, 等. 柳赞油田多层砂岩优势渗流通道特征及喉道体积[J]. 新疆石油地质, 2024, 45(1): 53-57. |
| CAO Tongfeng, GAO Donghua, LI Zhandong, et al. Characteristics of dominant flowing channels and throat volume of multi-layer sandstone reservoirs in Liuzan Oilfield[J]. Xinjiang Petroleum Geology, 2024, 45(1): 53-57. | |
| [19] | 谷丽冰, 李治平, 侯秀林. 二氧化碳驱引起储层物性改变的实验室研究[J]. 石油天然气学报, 2007, 29(3): 258-260. |
| GU Libing, LI Zhiping, HOU Xiulin. Experimental research of reservoir physical changes induced by CO2 flooding[J]. Journal of Oil and Gas Technology, 2007, 29(3): 258-260. | |
| [20] | KIM Y, WAN Jiamin, KNEAFSEY T J, et al. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: Pore-scale studies in micromodels[J]. Environmental Science & Technology, 2012, 46(7): 4228-4235. |
| [21] | XU Ting, PU Jun, QIN Xuejie, et al. Experimental analysis of matrix moveable oil saturation in tight sandstone reservoirs of the South Ordos Basin, China[J]. Energy Geoscience, 2024, 5(1): 100097. |
| [22] | CHANG Chun, ZHOU Quanlin, OOSTROM M, et al. Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions[J]. Advances in Water Resources, 2017, 100: 14-25. |
| [23] | BAO Bo, RIORDON J, MOSTOWFI F, et al. Microfluidic and nanofluidic phase behaviour characterization for industrial CO2, oil and gas[J]. Lab on a Chip, 2017, 17(16): 2740-2759. |
| [24] | GAVOILLE T, PANNACCI N, BERGEOT G, et al. Microfluidic approaches for accessing thermophysical properties of fluid systems[J]. Reaction Chemistry & Engineering, 2019, 4(10): 1721-1739. |
| [25] | 王勇, 姜汉桥, 郭晨, 等. 基于微流控技术的裂缝性碳酸盐岩油藏脱气后水窜治理实验研究[J]. 中国海上油气, 2023, 35(1): 78-88. |
| WANG Yong, JIANG Hanqiao, GUO Chen, et al. Microfluidics experimental investigation of water channeling control strategy after degassing in fractured carbonate reservoirs[J]. China Offshore Oil and Gas, 2023, 35(1): 78-88. | |
| [26] | 耿向飞, 丁彬, 张玉亮, 等. 致密储层纳米流度改性剂的微流控模拟评价[J]. 油田化学, 2019, 36(2): 267-270, 276. |
| GENG Xiangfei, DING Bin, ZHANG Yuliang, et al. Microfluidics simulation investigation of nano fluidity modifier for tight reservoir[J]. Oilfield Chemistry, 2019, 36(2): 267-270, 276. | |
| [27] | 王永诗, 巩建强, 陈冬霞, 等. 渤海湾盆地东营凹陷盐家地区深层砂砾岩油气藏相态演化及成藏过程[J]. 石油与天然气地质, 2023, 44(5): 1159-1172. |
| WANG Yongshi, GONG Jianqiang, CHEN Dongxia, et al. Phase evolution and accumulation mode of hydrocarbons in deep coarse-grained clastic reservoirs in the Yanjia area, Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2023, 44(5): 1159-1172. | |
| [28] | 李俊键, 刘洋, 高亚军, 等. 微观孔喉结构非均质性对剩余油分布形态的影响[J]. 石油勘探与开发, 2018, 45(6): 1043-1052. |
| LI Junjian, LIU Yang, GAO Yajun, et al. Effects of microscopic pore structure heterogeneity on the distribution and morphology of remaining oil[J]. Petroleum Exploration and Development, 2018, 45(6): 1043-1052. | |
| [29] | 徐飞, 姜汉桥, 刘铭, 等. 基于2.5D微流控技术的黏土矿物运移对喉道封堵和原油运移的影响[J]. 大庆石油地质与开发, 2023, 42(4): 64-73. |
| XU Fei, JIANG Hanqiao, LIU Ming, et al. Effect of clay minerals migration on pore throats plugging and oil migration based on 2.5D microfluidics technology[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(4): 64-73. | |
| [30] | MOLLA S, MOSTOWFI F. Microfluidic platform for PVT measurements[C]///SPE Annual Technical Conference and Exhibition, Amsterdam, 2014. Richardson: Society of Petroleum Engineers, 2014: SPE-170910-MS. |
| [31] | CABODI M, TURNER S W P, CRAIGHEAD H G. Entropic recoil separation of long DNA molecules[J]. Analytical Chemistry, 2002, 74(20): 5169-5174. |
| [32] | MOIRÉ M, PEYSSON Y, PANNACCI N, et al. A new microfluidic tensiometer for optimizing EOR formulations[C]//SPE Improved Oil Recovery Conference, Tulsa, 2016. Richardson: Society of Petroleum Engineers, 2016: SPE-179557-MS. |
| [33] | HE Kai, XU Liang, KENZHEKHANOV S, et al. A rock-on-a-chip approach to study fluid invasion and flowback in liquids-rich shale formations[C]//SPE Oklahoma Oil and Gas Symposium, Oklahoma City, 2017. Richardson: Society of Petroleum Engineers, 2017: SPE-185088-MS. |
| [34] | DU Yujing, XU Ke, MEJIA L, et al. Surface-active compounds induce time-dependent and non-monotonic fluid-fluid displacement during low-salinity water flooding[J]. Journal of Colloid and Interface Science, 2023, 631(Part A): 245-259. |
| [35] | LEI Wenhai, LU Xukang, WANG Moran. Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns[J]. Advances in Colloid and Interface Science, 2023, 311: 102826. |
| [1] | 牛小兵, 樊建明, 张超, 任奕霖, 何右安, 常睿, 成良丙. 鄂尔多斯盆地庆城页岩油提高采收率实践及探索[J]. 石油与天然气地质, 2025, 46(5): 1664-1681. |
| [2] | 胡伟, 徐婷, 杨阳, 康志江, 伦增珉, 李宗宇, 赵瑞明, 张文学. 超深断控凝析气藏注气提高凝析油采收率实验评价——以塔里木盆地顺北4号断裂带为例[J]. 石油与天然气地质, 2025, 46(2): 586-598. |
| [3] | 刘忠群, 贾英, 梁彬, 陈冲, 牛骏, 郭亚兵, 于清艳, 李倩. 致密砂岩储层微观气水滞留机理及注CO2提高采收率研究[J]. 石油与天然气地质, 2025, 46(1): 261-272. |
| [4] | 吕文雅, 安小平, 刘艳祥, 李德生, 曾联波, 皇甫展鸿, 唐英航, 张克宁, 张玉银. 致密砂岩储层注水诱导裂缝动态识别及演化特征[J]. 石油与天然气地质, 2024, 45(5): 1431-1446. |
| [5] | 孙焕泉, 杨勇, 方吉超, 凡哲元, 吴光焕, 元福卿, 杨元亮, 吴永超. 提高油气田采收率技术协同方法与应用[J]. 石油与天然气地质, 2024, 45(3): 600-608. |
| [6] | 王宏博, 马存飞, 曹铮, 李志鹏, 韩长城, 纪文明, 杨艺. 基于岩相的致密砂岩差异成岩作用及其储层物性响应[J]. 石油与天然气地质, 2023, 44(4): 976-992. |
| [7] | 计秉玉, 郑松青, 顾浩. 缝洞型碳酸盐岩油藏开发技术的认识与思考[J]. 石油与天然气地质, 2022, 43(6): 1459-1465. |
| [8] | 孙光远, 王哲麟, 刘培刚, 张志强. 碱性长石溶蚀微孔发育特征及其对致密砂岩储层物性的改造作用[J]. 石油与天然气地质, 2022, 43(3): 658-669. |
| [9] | 滕莹, 王朋飞, Aman Zachary. 水合物颗粒与矿物表面间粘附力特性及其影响因素[J]. 石油与天然气地质, 2022, 43(3): 703-710. |
| [10] | 张莉. 中国石化东部老油田提高采收率技术进展及攻关方向[J]. 石油与天然气地质, 2022, 43(3): 717-723. |
| [11] | 陈国辉, 蒋恕, 李醇, 李思思, 彭鹏, 莫兰, 张钰莹, 张鲁川, 张天宇. 加热过程中页岩储层改质效果研究进展[J]. 石油与天然气地质, 2022, 43(2): 286-296. |
| [12] | 谷宇峰, 张道勇, 鲍志东. 利用混合模型CRBM-PSO-XGBoost识别致密砂岩储层岩性[J]. 石油与天然气地质, 2021, 42(5): 1210-1222. |
| [13] | 陈民锋, 杨子由, 秦立峰, 付世雄, 荣金曦. 低渗透各向异性油藏菱形井网储量动用评价及设计优化[J]. 石油与天然气地质, 2021, 42(5): 1223-1233. |
| [14] | 李王鹏, 刘忠群, 胡宗全, 金武军, 李朋威, 刘君龙, 徐士林, 马安来. 四川盆地川西坳陷新场须家河组二段致密砂岩储层裂缝发育特征及主控因素[J]. 石油与天然气地质, 2021, 42(4): 884-897, 1010. |
| [15] | 张金才, 范鑫, 黄志文, 刘忠群, 亓原昌. 四川盆地川西坳陷上三叠统须家河组储层各向异性地应力评价方法[J]. 石油与天然气地质, 2021, 42(4): 963-972. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||