石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (3): 690-701.doi: 10.11743/ogg20210314
沈安江1,2(), 乔占峰1,2, 佘敏1,2, 蒙绍兴1,2, 张杰1,2, 王鑫1,2
收稿日期:
2020-07-09
出版日期:
2021-06-28
发布日期:
2021-06-23
第一作者简介:
沈安江(1965—),男,博士、教授级高级工程师,碳酸盐岩沉积储集层。E-mail: 基金项目:
Anjiang Shen1,2(), Zhanfeng Qiao1,2, Min She1,2, Shaoxing Meng1,2, Jie Zhang1,2, Xin Wang1,2
Received:
2020-07-09
Online:
2021-06-28
Published:
2021-06-23
摘要:
针对碳酸盐岩埋藏溶蚀孔洞预测的难题,以四川盆地龙王庙组白云岩储层为解剖对象,通过地层条件下的溶蚀模拟实验揭示碳酸盐岩埋藏溶蚀孔洞发育的主控因素和分布规律,为埋藏溶蚀孔洞预测提供理论依据。实验结果表明,岩石物性、酸性流体浓度和温度主控埋藏溶蚀孔洞的发育,地质界面(暴露面、层序界面、不整合面和断裂系统)和高孔渗层主控埋藏溶蚀孔洞的平面分布,垂向上存在一个“成孔高峰期”,埋藏溶孔的生成呈事件式发生,在特定深度段的温度和高浓度酸性流体的匹配下可以形成大量的溶蚀孔洞,并受埋藏史、温压史和流体演化史控制;基于埋藏溶蚀孔洞发育主控因素和分布规律认识,通过四川盆地龙王庙组埋藏前孔隙分布图、筇竹寺组烃源岩在70~100 ℃温度窗生烃和生酸强度图、龙王庙组经历70~100 ℃温度窗时古隆起和断裂分布图、龙王庙组经历70~100 ℃温度窗时埋藏时间(Ma)等值线图的编制,预测了龙王庙组埋藏溶蚀孔洞的分布。构建了碳酸盐岩溶蚀孔洞预测技术及流程,为碳酸盐岩储层埋藏溶蚀孔洞分布预测和评价提供了手段。
中图分类号:
图2
川中地区龙王庙组白云岩储层岩心和显微特征 a.鲕粒白云岩, 鲕粒由泥晶白云石构成, 粒间孔发育, 几乎不见白云石胶结物, 磨溪17井,埋深4 663.97 m, 铸体,单偏光;b.粉细晶白云岩,残留颗粒结构粉细晶白云岩中的晶间孔具有粒间孔的幻影,有可能是对原岩孔隙的继承和调整,磨溪17井, 埋深4 612.50~4 612.61 m, 铸体, 单偏光;c.粉细晶白云岩, 非组构选择性溶蚀孔洞为自形晶白云石胶结物充填, 磨溪23井, 埋深4 809.70 m, 岩心;d.粉细晶白云岩, 非组构选择性溶蚀孔洞为鞍状白云石(SD)部分充填, 磨溪101井, 埋深2 306.50 m, 岩心;e.粉细晶残余颗粒结构白云岩, 粒间充满沥青(5%), 见晶间溶孔、晶模孔和粒间残余溶孔,未被溶解的白云石晶体残留边缘,磨溪13井, 埋深4 575.19 m,铸体,单偏光;f.视域同图 2e,正交光"
1 | 马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18 (4): 181- 192. |
Ma Yongsheng , Cai Xunyu , Zhao Peirong . The research status and advances in porosity evolution and diagenesis of deep carbonate Reservoir[J]. Earth Science Frontiers, 2011, 18 (4): 181- 192. | |
2 | 吕修祥, 陈佩佩, 陈坤, 等. 深层碳酸盐岩差异成岩作用对油气分层聚集的影响-以塔里木盆地塔中隆起北斜坡鹰山组为例[J]. 石油与天然气地质, 2019, 40 (5): 957- 971. |
Ma Yongsheng , Cai Xunyu , Zhao Peirong . Effects of differential diagenesis of deep carbonate rocks on hydrocarbon zonation and accumulation: A case study of Yingshan Formation on northern slope of Tazhong uplift, Tarim Basin[J]. Oil & Gas Geology, 2019, 40 (5): 957- 971. | |
3 | 胡安平, 沈安江, 梁峰, 等. 激光铀铅同位素定年技术在塔里木盆地肖尔布拉克组储层孔隙演化研究中的应用[J]. 石油与天然气地质, 2020, 41 (1): 37- 49. |
Hu Anping , Shen Anjiang , Liang Feng . Application of laser in-situ U-Pb dating to reconstruct the reservoir porosity evolution in the Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41 (1): 37- 49. | |
4 | Clyded H M . Carbonate diagenesis and porosity[M]. Amsterdam: Elsevier Science Publisher B.V., 2001: 1- 16. |
5 | 赵文智, 沈安江, 胡素云, 等. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 39 (1): 1- 12. |
Zhao Wenzhi , Shen Anjiang , Hu Suyun , et al. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development, 2012, 39 (1): 1- 12. | |
6 | 沈安江, 赵文智, 胡安平, 等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42 (5): 545- 554. |
Shen Anjiang , Zhao Wenzhi , Hu Anping , et al. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42 (5): 545- 554. | |
7 |
丁熊, 谭秀成, 李凌, 等. 四川盆地雷口坡组三段颗粒滩储层特征及成因分析[J]. 中国石油大学学报(自然科学版), 2013, 37 (4): 30- 37.
doi: 10.3969/j.issn.1673-5005.2013.04.005 |
Ding Xiong , Tan Xiucheng , Li Ling , et al. Characteristics and genetic analysis of grain shoal reservoirs in Lei 3 member of Middle Triassic Leikoupo formation, Sichuan Basin[J]. Journal of China University of Petroleum, 2013, 37 (4): 30- 37.
doi: 10.3969/j.issn.1673-5005.2013.04.005 |
|
8 |
Sanders D . Syndepositional dissolution of calcium carbonate in neritic carbonate environments: Geological recognition, processes, potential significance[J]. Journal of African Earth Science, 2003, 36, 99- 134.
doi: 10.1016/S0899-5362(03)00027-7 |
9 | Scholle P A , Ulmer-Scholle D S . A color guide to the petrography of carbonate rocks: Grains, textures, porosity, diagenesis[J]. AAPG Memoir 77, 2003, 474. |
10 |
张宝民, 刘静江, 边立曾, 等. 礁滩体与建设性成岩作用[J]. 地学前缘, 2009, 16 (1): 270- 289.
doi: 10.3321/j.issn:1005-2321.2009.01.029 |
Zhang Baomin , Liu Jingjiang , Bian Lizeng , et al. Reef-banks and reservoir-constructive diagenesis[J]. Earth Science Frontiers, 2009, 16 (1): 270- 289.
doi: 10.3321/j.issn:1005-2321.2009.01.029 |
|
11 | Bjørlykke K . Petroleum Geoscience: From sedimentary environment to rock physics[M]. Berlin Heidelberg: Springer-Verlag, 2010: 141- 200. |
12 | 谭秀成, 肖笛, 陈景山, 等. 早成岩期喀斯特化研究新进展及意义[J]. 古地理学报, 2015, 17 (4): 441- 456. |
Tan Xiucheng , Xiao Di , Chen Jingshan , et al. Reef-bankNew advance and enlightenment of eogenetic karstification[J]. Journal of Palaeogeography, 2015, 17 (4): 441- 456. | |
13 | 蔡春芳, 梅博文, 马亭, 等. 塔里木盆地有机酸来源、分布及对成岩作用的影响[J]. 沉积学报, 1997, 15 (3): 103- 109. |
Cai Chunfang , Mei Bowen , Ma Ting , et al. The source, distribution of organic acids in oilfield waters and their effects on mineral diagenesis in Tarim Basin[J]. Acta Sedimentologica Sinica, 1997, 15 (3): 103- 109. | |
14 |
Langhorne B , Smithe J , Graham R D . Structurally controlled hydrothermal alteration of carbonate reservoirs: Introduction[J]. AAPG Bulletin, 2006, 90 (11): 1635- 1640.
doi: 10.1306/intro901106 |
15 |
Rcik W , Jefffey J , Ihsan , et al. Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada[J]. AAPG Bulletin, 2006, 90 (11): 1843- 1861.
doi: 10.1306/03200605074 |
16 | 丁茜, 何治亮, 王静彬, 等. 生烃伴生酸性流体对碳酸盐岩储层改造效应的模拟实验[J]. 石油与天然气地质, 2020, 41 (1): 223- 234. |
Ding Qian , He Zhiliang , Wang Jingbin , et al. Simulation experiment of carbonate reservoir modification by source rock-derived acidic fluids[J]. Oil & Gas Geology, 2020, 41 (1): 223- 234. | |
17 | Beavington-Penney S J , Nadin P , Wright V P , et al. Reservoir quality variation in an Eocene carbonate ramp, E1 Garia Formation, offshore Tunisia: Structural control of burial corrosion and dolomitisation[J]. Sedimentary Geology, 2008, 209 (1): 42- 57. |
18 | 金振奎, 余宽宏. 白云岩储集层埋藏溶蚀作用特征及意义——以塔里木盆地东部下古生界为例[J]. 石油勘探与开发, 2011, 38 (4): 428- 434. |
Jin Zhenkui , Yu Kuanhong . Characteristics and significance of the burial dissolution of dolomite reservoirs: taking the Lower Palaeozoic in eastern Tarim Basin as an example[J]. Petroleum Exploration and Development, 2011, 38 (4): 428- 434. | |
19 |
沈安江, 佘敏, 胡安平, 等. 海相碳酸盐岩埋藏溶孔规模与分布规律初探[J]. 天然气地球科学, 2015, 26 (10): 1823- 1830.
doi: 10.11764/j.issn.1672-1926.2015.10.1823 |
Shen Anjiang , She Min , Hu Anping , et al. Scale and distribution of marine carbonate[J]. Natural Gas Geoscience, 2015, 26 (10): 1823- 1830.
doi: 10.11764/j.issn.1672-1926.2015.10.1823 |
|
20 |
张景廉, 金之钧, 杨雷, 等. 塔里木盆地深部地质流体与油气藏的关系[J]. 新疆石油地质, 2001, 22 (5): 371- 375.
doi: 10.3969/j.issn.1001-3873.2001.05.003 |
Zhang Jinglian , Jin Zhijun , Yang Lei , et al. A relation between the deep geofluids and reservoir in Tarim Basin[J]. Xinjiang Petroleum Geology, 2001, 22 (5): 371- 375.
doi: 10.3969/j.issn.1001-3873.2001.05.003 |
|
21 | 金之钧, 张刘平, 杨雷, 等. 沉积盆地深部流体的地球化学特征及油气成藏效应初探[J]. 地球科学——中国地质大学学报, 2002, 27 (6): 659- 665. |
Jin Zhijun , Zhang Liuping , Yang Lei , et al. Primary study of geochemical features of deep fluids and their effectiveness on oil/gas reservoir formation in sedimental basins[J]. Earth Science-Journal of China University of Geosciences, 2002, 27 (6): 659- 665. | |
22 |
陈景山, 李忠, 王振宇, 等. 塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布[J]. 沉积学报, 2007, 25 (6): 858- 868.
doi: 10.3969/j.issn.1000-0550.2007.06.007 |
Chen Jingshan , Li Zhong , Wang Zhenyu , et al. Paleokarstification and reservoir distribution of Ordovician carbonates in Tarim Basin[J]. Acta Sedimentologica Sinica, 2007, 25 (6): 858- 868.
doi: 10.3969/j.issn.1000-0550.2007.06.007 |
|
23 |
Taylor T R , Giles M R , Hathon L A , et al. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality[J]. AAPG Bulletin, 2010, 94, 1093.
doi: 10.1306/04211009123 |
24 | 李忠, 黄思静, 刘嘉庆, 等. 塔里木盆地塔河奥陶系碳酸盐岩储层埋藏成岩和构造—热流体作用及其有效性[J]. 沉积学报, 2010, 28 (5): 969- 979. |
Li Zhong , Huang Sijing , Liu Jiaqing , et al. Buried diagenesis, structurally controlled thermal-fluid process and their effection Ordovician carbonate reservoirs in Taha, Tarim Basin[J]. Acta Sedimentologica Sinica, 2010, 28 (5): 969- 979. | |
25 |
Ehrenberg S N , Walderhaug O , Bjørlykke K . Carbonate porosity creation by mesogenetic dissolution: Reality or illusion?[J]. AAPG Bulletin, 2012, 96 (2): 217- 233.
doi: 10.1306/05031110187 |
26 |
Hao F , Zhang X F , Wang C W , et al. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin, China[J]. Earth Science Reviews, 2015, 141, 154- 177.
doi: 10.1016/j.earscirev.2014.12.001 |
27 |
佘敏, 蒋义敏, 胡安平, 等. 碳酸盐岩溶蚀模拟实验技术进展及应用[J]. 海相油气地质, 2020, 25 (1): 12- 21.
doi: 10.3969/j.issn.1672-9854.2020.01.002 |
She Min , Jiang Yimin , Hu Anping , et al. The progress and application of dissolution simulation of carbonate rock[J]. Marine Origin Petroleum Geology, 2020, 25 (1): 12- 21.
doi: 10.3969/j.issn.1672-9854.2020.01.002 |
|
28 |
范维, 罗开平, 范明, 等. 优质白云岩储层形成的重要机制——差异溶蚀作用[J]. 科学技术与工程, 2017, 17 (1): 15- 20.
doi: 10.3969/j.issn.1671-1815.2017.01.004 |
Fan Wei , Luo Kaiping , Fan Ming , et al. Most important mechanism of carbonate reservoir: different corrosion[J]. Science Technology and Engineering, 2017, 17 (1): 15- 20.
doi: 10.3969/j.issn.1671-1815.2017.01.004 |
|
29 | 远光辉, 操应长, 杨田, 等. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J]. 地学前缘, 2013, 20 (5): 207- 219. |
Yuan Guanghui , Cao Yingchang , Yang Tian , et al. Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J]. Earth Science Frontiers, 2013, 20 (5): 207- 219. | |
30 | Meshri I D . On the reactivity of carbonic and organic acids and generation of secondary porosity[M]. SEPM Special Publication, 1986, 38 123- 128. |
31 | 强子同. 碳酸盐岩储层地质学[M]. 北京: 中国石油大学出版社, 2007. |
Qiang Zitong . Carbonate reservoir geology[M]. Beijing: China University of Petroleum Press, 2007. | |
32 | 蔡春芳, 梅博文, 李伟. 塔中古生界油田水化学与流体运移和演化[J]. 石油勘探与开发, 1997, (1): 18- 21+92. |
Cai Chunfang , Mei Bowen , Li Wei . Fluid migration and alteration: constraints from chemistry of Palaeozoic oil field waters in central Tarim[J]. Petroleum Exploration and Development, 1997, (1): 18- 21+92. | |
33 | 刘文汇, 张殿伟, 王晓锋. 加氢和TSR反应对天然气同位素组成的影响[J]. 岩石学报, 2006, 22 (8): 2237- 2242. |
Liu Wenhui , Zhang Dianwei , Wang Xiaofeng . Influence of hydrogenation and TSR(thermochemical sulfate reduction) to natural gas isotopic composition[J]. Acta Petrologica Sinica, 2006, 22 (8): 2237- 2242. | |
34 | 肖礼军, 汪益宁, 滕蔓. 川东H2S气体分布特征及对储集层的后期改造作用[J]. 科学技术与工程, 2011, 11(32): 7892-7894+7898. |
Xiao Lijun, Wang Yining, Teng Man. H2S Gas Distribution in Eastern Sichuan and the transformation of the role the latter part of the reservoir [J]. Science Technology and Engineering, 2011, 11(32): 7892-7894+7898. | |
35 |
范明, 胡凯, 蒋小琼, 等. 酸性流体对碳酸盐岩储层的改造作用[J]. 地球化学, 2009, 38 (1): 20- 26.
doi: 10.3321/j.issn:0379-1726.2009.01.002 |
Fan Ming , Hu Kai , Jiang Xiaoqiong , et al. Effect of acid fluid on carbonate reservoirs reconstruction[J]. Geochimica, 2009, 38 (1): 20- 26.
doi: 10.3321/j.issn:0379-1726.2009.01.002 |
|
36 | 黄思静, 黄培培, 黄可可, 等. 碳酸盐倒退溶解模式的化学热力学基础-与H2S有关的溶解介质及其与CO2的对比[J]. 沉积学报, 2010, 28 (1): 1- 9. |
Huang Sijing , Huang Peipei , Huang Keke , et al. Chemical thermodynamics foundation of retrograde solubility for carbonate: solution media related to H2S and Comparing to CO2[J]. Acta Sedimentologica Sinica, 2010, 28 (1): 1- 9. | |
37 | 肖林萍. 埋藏条件下碳酸盐岩实验室溶蚀作用模拟的热力学模型与地质勘探方向——以陕甘宁盆地下奥陶统马家沟组第五段为例[J]. 岩相古地理, 1997, 17 (4): 59- 72. |
Xiao Linping . Thermodynamic model for experimental simulation of dissolution of the carbonate rocks in the burial environments: an example from the fifth member of the lower Devonian Majiagou formation in the Shanxi-Gansu-Ningxia basin[J]. Sedimentary Facies and Palaeogeography, 1997, 17 (4): 59- 72. | |
38 | 汪泽成, 王铜山, 文龙, 等. 四川盆地安岳特大型气田基本地质特征与形成条件[J]. 中国海上油气, 2016, 28 (2): 45- 52. |
Wang Zecheng , Wang Tongshan , Wen Long , et al. Basic geological characteristics and accumulation conditions of Anyue giant gas field, Sichuan basin[J]. China Offshore Oil and Gas, 2016, 28 (2): 45- 52. | |
39 |
张建勇, 罗文军, 周进高, 等. 四川盆地安岳特大型气田下寒武统龙王庙组优质储层形成的主控因素[J]. 天然气地球科学, 2015, 26 (11): 2063- 2074.
doi: 10.11764/j.issn.1672-1926.2015.11.2063 |
Zhang Jianyong , Luo wenjun , Zhou Jingao , et al. Main origins of high quality reservoir of Lower Cambrian Longwangmiao Formation in the giant Anyuan Gasfield, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2015, 26 (11): 2063- 2074.
doi: 10.11764/j.issn.1672-1926.2015.11.2063 |
|
40 | 赵文智, 沈安江, 潘文庆, 等. 碳酸盐岩岩溶储层类型研究及对勘探的指导意义——以塔里木盆地岩溶储层为例[J]. 岩石学报, 2013, 29 (9): 3213- 3222. |
Zhao Wenzhi , Shen Anjiang , Pan Wenqing , et al. A research on carbonate karst reservoirs classification and its implication on hydrocarbon exploration: cases studies from Tarim Basin[J]. Acta Petrologica Sinica, 2013, 29 (9): 3213- 3222. | |
41 | 汪泽成. 四川盆地川中古隆起构造演化及对大气区形成的控制作用研究[M]. 北京: 中国石油勘探开发研究院, 2013. |
Wang Zecheng . The tectonic evolution of paleo-uplift in Central Sichuan and its control on the formation of the giant gas accumulation area in Sichuan Basin[M]. Beijing: Petrochina Research Institute of Petroleum Exploration and Development, 2013. | |
42 | 杨雨, 等. 川中古隆起震旦系-下古生界区带评价、目标优选与勘探部署[M]. 西南油气田分公司, 2013. |
Yang Yu , et al. The play evaluation, target optimization and exploration deployment on the Sinian – Lower Palaeozoic in Central Sichuan Paleeo-uplift[M]. Petrochina Southwest Oil and Gas Field Company, 2013. | |
43 | 沈安江, 陈娅娜, 潘立银, 等. 四川盆地寒武系龙王庙组沉积相与储层分布预测研究[J]. 天然气地球科学, 2017, 28 (8): 1176- 1190. |
Shen Anjiang , Chen Yana , Pan Liyin , et al. The facies and porosity origin of reservoirs: case studies from Longwangmiao Formation of Cambrian, Sichuan Basin, and their implications to reservoir prediction[J]. Natural Gas Geoscience, 2017, 28 (8): 1176- 1190. | |
44 |
Shen Anjiang , Hu Anping , Pan Liyin , et al. Origin and distribution of Grain-dolostone reservoirs in the Cambrian Longwangmiao Formation, Sichuan Basin, China[J]. Acta Geologica Sinica (English Edition), 2017, 91 (1): 204- 218.
doi: 10.1111/1755-6724.13072 |
45 |
沈安江, 王招明, 郑兴平, 等. 塔里木盆地牙哈—英买力地区寒武系—奥陶系碳酸盐岩储层成因类型、特征及油气勘探潜力[J]. 海相油气地质, 2007, 12 (2): 23- 32.
doi: 10.3969/j.issn.1672-9854.2007.02.004 |
Shen Anjiang , Wang Zhaoming , Zheng Xingping , et al. Genesis classification of Cambrian-Ordovician carbonate reservoirs and petroleum exploration potential in Yaka-Yengimahalla Area, Tarim Basin[J]. Marine Origin Petroleum Geology, 2007, 12 (2): 23- 32.
doi: 10.3969/j.issn.1672-9854.2007.02.004 |
|
46 |
沈安江, 周进高, 辛勇光, 等. 四川盆地雷口坡组白云岩储层类型及成因[J]. 海相油气地质, 2008, 13 (4): 19- 28.
doi: 10.3969/j.issn.1672-9854.2008.04.004 |
Shen Anjiang , Zhou Jingao , Xin Yongguang , et al. Origin of Triassic Leikoupo dolostone reservoirs in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2008, 13 (4): 19- 28.
doi: 10.3969/j.issn.1672-9854.2008.04.004 |
|
47 | 张水昌, 朱光有, 何坤. 硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J]. 岩石学报, 2011, 27 (3): 809- 826. |
Zhang Shuicang , Zhu Guangyou , He Kong . The effects of thermochemical sulfate reduction on occurrence of oil-cracking gas and reformation of deep carbonate reservoir and the interaction mechanisms[J]. Acta Petrologica Sinica, 2011, 27 (3): 809- 826. | |
48 | 魏国齐, 杜金虎, 徐春春, 等. 四川盆地高石梯—磨溪地区震旦系—寒武系大型气藏特征与聚集模式[J]. 石油学报, 2015, 36 (1): 1- 12. |
Wei Guoqi , Du Jinhu , Xu Chunchun , et al. Characteristics and accumulation modes of large gas reservoris in Sinina-Cambrian of Gao shiti-Moxi region, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36 (1): 1- 12. | |
49 | 汪泽成, 姜华, 王铜山, 等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发, 2014, 41 (3): 305- 312. |
Wang Zecheng , Jiang Hua , Wang Tongshan , et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2014, 41 (3): 305- 312. | |
50 |
魏国齐, 杨威, 杜金虎, 等. 2015.四川盆地震旦纪—早寒武世克拉通内裂陷地质特征[J]. 天然气工业, 2015, 34 (1): 24- 35.
doi: 10.3787/j.issn.1000-0976.2015.01.003 |
Wei Guoqi , Du Wei , Du Jinhu , et al. Geological characteristics of the Sinian-Rarly Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industrial, 2015, 35 (1): 24- 35.
doi: 10.3787/j.issn.1000-0976.2015.01.003 |
|
51 | 杜金虎, 汪泽成, 邹才能, 等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报, 2016, 37 (1): 1- 16. |
Du Jinhu , Wang Zecheng , Zou Caineng , et al. Discovery of intra-cratonic rift in the Upper Yangtze and its control effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37 (1): 1- 16. | |
52 | 魏国齐, 王志宏, 李剑, 等. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学, 2017, 28 (1): 1- 13. |
WeiGuoqi , Wang Zhihong , Li Jian , et al. Characteristics of source rocks, resource potential and exploration direction of Sinian and Cambrian in Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28 (1): 1- 13. | |
53 | 杨程宇, 文龙, 王铁冠, 等. 川中隆起安岳气田古油藏成藏时间厘定[J]. 石油与天然气地质, 2020, 41 (3): 492- 502. |
Yang Chengyu , Wen Long , Wang Tieguan , et al. Timing of hydrocarbon accumulation for paleo-oil reservoirs in Anyue gas field in Chuanzhong Uplift[J]. Oil & Gas Geology, 2020, 41 (3): 492- 502. | |
54 | 王瀚, 李智武, 刘树根, 等. 川北地区下寒武统龙王庙组混积特征及其对储层的影响[J]. 石油实验地质, 2019, 41 (5): 663- 673. |
Wang Han , Li Zhiwu , Liu Shugen , et al. Characteristics of mixed sediments and influence on reservoir of Lower Cambrian Longwangmiao Formation, northern Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41 (5): 663- 673. | |
55 | 朱联强, 袁海锋, 林雪梅, 等. 四川盆地安岳构造寒武系龙王庙组成岩矿物充填期次及油气成藏[J]. 石油实验地质, 2019, 41 (6): 812- 820. |
Zhu Lianqiang , Yuan Haifeng , Lin Xuemei , et al. Diagenesis and hydrocarbon accumulation of the Cambrian Longwangmiao Formation in Anyue, Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41 (6): 812- 820. | |
56 |
袁春晖, 万玉金, 刘晓华, 等. 龙王庙组气藏X井区储层非均质性精细描述[J]. 特种油气藏, 2019, 26 (2): 121- 126.
doi: 10.3969/j.issn.1006-6535.2019.02.022 |
Yuan Chunhui , Wan Yujin , Liu Xiaohua , et al. Fine characterization of reservoir heterogeneity in the wellblock X of Longwangmiao formation[J]. Special Oil & Gas Reservoirs, 2019, 26 (2): 121- 126.
doi: 10.3969/j.issn.1006-6535.2019.02.022 |
|
57 | 郭旭升, 胡东风, 黄仁春, 等. 川东北地区胡家坝震旦系灯影组古油藏特征及其油气勘探意义[J]. 石油与天然气地质, 2020, 41 (4): 673- 683. |
Guo Xusheng , Hu Dongfeng , Huang Renchun , et al. Feature of paleo-oil pools in the Sinian Dengying Formation, northeastern Sichuan Basin, and its significance to exploration[J]. Oil & Gas Geology, 2020, 41 (4): 673- 683. | |
58 | 赵建华, 金之钧, 林畅松, 等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质, 2019, 40 (4): 701- 715. |
Zhao Jianhua , Jin Zhijun , Lin Changsong , et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40 (4): 701- 715. | |
59 | 潘磊, 徐祖新, 李让彬, 等. 川东南涪陵地区基底断裂特征与油气成藏[J]. 特种油气藏, 2020, 27 (4): 19- 25. |
Pan Lei , Xu Zuxin , Li Rangbin , et al. Basement fault characterization and hydrocarbon accumulation in Fuling of southeastern Sichuan[J]. Special Oil & Gas Reserviors, 2020, 27 (4): 19- 25. |
[1] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[2] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[3] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[4] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[5] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[6] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[7] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[8] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[9] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[10] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[11] | 李双建, 李智, 张磊, 李英强, 孟宪武, 王海军. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
[12] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[13] | 刘昇, 范存辉, 张本健, 张亚, 王尉, 罗冰, 白晓亮. 四川盆地东部中二叠统茅口组孤峰段展布特征及其油气地质意义[J]. 石油与天然气地质, 2023, 44(4): 993-1008. |
[14] | 吴冬, 邓虎成, 熊亮, 曹凯旋, 董晓霞, 赵勇, 魏力民, 王同, 马若龙. 四川盆地及其周缘下寒武统麦地坪组-筇竹寺组层序充填和演化模式[J]. 石油与天然气地质, 2023, 44(3): 764-777. |
[15] | 王濡岳, 胡宗全, 赖富强, 刘粤蛟, 邬忠虎, 何建华, 邹冠贵, 王鹏威, 李治昊. 川东北地区下侏罗统自流井组大安寨段陆相页岩脆性特征及其控制因素[J]. 石油与天然气地质, 2023, 44(2): 366-378. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||