石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (3): 702-716.doi: 10.11743/ogg20210315
刘诗琦1,2(), 陈森然1,2, 刘波1,2,*(), 石开波1,2, 刘钰洋3, 郑浩夫4, 罗清清1,2
收稿日期:
2020-12-21
出版日期:
2021-06-28
发布日期:
2021-06-23
通讯作者:
刘波
E-mail:liushiqi17@pku.edu.cn;bobliu@pku.edu.cn
第一作者简介:
刘诗琦(1996—),女,博士研究生,碳酸盐岩储层地质学。E-mail: 基金项目:
Shiqi Liu1,2(), Senran Chen1,2, Bo Liu1,2,*(), Kaibo Shi1,2, Yuyang Liu3, Haofu Zheng4, Qingqing Luo1,2
Received:
2020-12-21
Online:
2021-06-28
Published:
2021-06-23
Contact:
Bo Liu
E-mail:liushiqi17@pku.edu.cn;bobliu@pku.edu.cn
摘要:
利用水热金刚石压腔装置结合激光拉曼光谱和光学显微镜设备,实现了碳酸盐矿物/岩石-流体的原位模拟实验。结合四川盆地实际地质条件,针对栖霞组-茅口组白云岩进行了封闭-开放-封闭的连续变化体系原位模拟实验,通过乙酸酐的水解实现了封闭压腔内乙酸的原位生成。实验结果表明,封闭体系-阶段性开放体系中,碳酸盐岩样品边缘及解理处发生溶蚀,溶蚀规模与酸性流体通量有关。进入封闭体系后,溶液离子相对浓度的拉曼半定量结果显示趋于沉淀方向。实验结果结合四川盆地二叠系实际地质条件,表明川西南地区栖霞组-茅口组中粗晶白云岩晶间孔-晶间溶孔的演化符合实验模拟的封闭-开放-封闭体系,构造断裂与酸性流体对离子的搬运作用对体系内的孔隙和物质实现了溶蚀-胶结的再分配。
中图分类号:
表1
标准矿物及四川盆地栖霞组-茅口组原位模拟实验设计"
样品编号 | 样品剖面位置 | 层位 | 岩性 | 流体成分 | 流体通量 | 温度/℃ | 压力/MPa |
A | 标准矿物 | — | 白云石 | 乙酸酐 | 不足 | 20~300 | 0~100 |
B | 标准矿物 | — | 白云石 | 乙酸酐 | 适量 | 20~300 | 0~100 |
C | 标准矿物 | — | 白云石 | 乙酸酐 | 过量 | 20~300 | 0~100 |
XBX-1-2 | 广元西北乡剖面 | P1q | 粉晶白云岩 | 乙酸酐 | 不足 | 20~200 | 0~100 |
ZC-6 | 洪雅张村剖面 | P1m | 残余颗粒白云岩 | 乙酸酐 | 不足 | 20~200 | 0~100 |
XJG-5 | 甘洛新基姑剖面 | P1q | 中粗晶白云岩 | 乙酸酐 | 适量 | 20~300 | 0~100 |
LMH-1 | 落木河剖面 | P1q | 残余生屑灰质粉晶白云岩 | 乙酸酐 | 过量 | 20~200 | 0~100 |
表3
标准矿物及四川盆地实验样品的实验温度及压力"
模拟地层深度/km | 白云石A | 白云石B | 白云石C | ||||||||
温度/℃ | 压力/MPa | 温度/℃ | 压力/MPa | 温度/℃ | 压力/MPa | ||||||
0 | 20 | 79 | 20 | 52 | 20 | 186 | |||||
2 | 60 | 81 | 60 | 117 | 60 | 243 | |||||
4 | 100 | 177 | 100 | 151 | 100 | 311 | |||||
6 | 140 | 236 | 140 | 262 | 140 | 385 | |||||
8 | 180 | 393 | 180 | 336 | 180 | 445 | |||||
10 | 220 | 460 | 220 | 373 | 220 | 537 | |||||
12 | 260 | 496 | 260 | 420 | 260 | 641 | |||||
14 | 300 | 648 | 300 | 471 | 300 | 693 | |||||
模拟地层深度/km | XBX-1-2 | ZC-6 | XJG-5 | LMH-1 | |||||||
温度/℃ | 压力/MPa | 温度/℃ | 压力/MPa | 温度/℃ | 压力/MPa | 温度/℃ | 压力/MPa | ||||
0 | 20 | 0.1 | 20 | 0.1 | 20 | 0.1 | 20 | 449 | |||
1 | 40 | 0.1 | 40 | — | 40 | 0.1 | 40 | 414 | |||
2 | 60 | 0.1 | 60 | 3 | 60 | 0.1 | 60 | 389 | |||
3 | 80 | — | 80 | 10 | 80 | — | 80 | — | |||
4 | 100 | 44 | 100 | 16 | 100 | 43 | 100 | 375 | |||
5 | 120 | 77 | 120 | 23 | 120 | — | 120 | — | |||
6 | 140 | 114 | 140 | 34 | 140 | 93 | 140 | 467 | |||
7 | 160 | 151 | 160 | 56 | 160 | — | 160 | 526 | |||
8 | 180 | 191 | 180 | 82 | 180 | 124 | 180 | — | |||
9 | 200 | 231 | 200 | 105 | 200 | 190 | 200 | — |
图4
不同白云石标准矿物与乙酸酐-水体系原位实验显微镜下观察结果 a.样品白云石A,模拟深度0 km,温度20 ℃,压力79 MPa;b.样品白云石A,模拟深度4 km,温度100 ℃,压力177 MPa;c.样品白云石A,模拟深度10 km,温度220 ℃,压力460 MPa;d.样品白云石A,模拟深度12 km,温度260 ℃,压力496 MPa;e.样品白云石B,模拟深度0 km,温度20 ℃,压力52 MPa;f.样品白云石B,模拟深度4 km,温度100 ℃,压力151 MPa;g.样品白云石B,模拟深度10 km,温度220 ℃,压力373 MPa;h.样品白云石B,模拟深度12 km,温度260 ℃,压力420 MPa;i.样品白云石C,模拟深度0 km,温度20 ℃,压力186 MPa;j.样品白云石C,模拟深度3.5 km,温度90 ℃,压力300 MPa;k.样品白云石C,模拟深度4 km,温度100 ℃,压力311 MPa;l.样品白云石C,模拟深度6 km,温度140 ℃,压力385 MPaD.白云石矿物;Q.石英"
图6
四川盆地不同白云岩样品与乙酸酐-水的体系原位实验显微镜下观察结果 a.样品XBX-1-2粉晶白云岩,广元西北乡剖面,模拟深度0 km,温度20 ℃,压力0 MPa;b.样品XBX-1-2粉晶白云岩,广元西北乡剖面,模拟深度4 km,温度100 ℃,压力44 MPa;c.样品XBX-1-2粉晶白云岩,广元西北乡剖面,模拟深度7 km,温度160 ℃,压力151 MPa;d.样品XBX-1-2粉晶白云岩,广元西北乡剖面,模拟深度9 km,温度200 ℃,压力231 MPa;e.样品ZC-6残余颗粒白云岩,洪雅张村剖面,模拟深度0 km,温度20 ℃,压力0 MPa;f.样品ZC-6残余颗粒白云岩,洪雅张村剖面,模拟深度4 km,温度100 ℃,压力16 MPa;g.样品ZC-6残余颗粒白云岩,洪雅张村剖面,模拟深度7 km,温度160 ℃,压力56 MPa;h.样品ZC-6残余颗粒白云岩,洪雅张村剖面,模拟深度9 km,温度200 ℃,压力105 MPa;i.样品XJG-5中粗晶白云岩,甘洛新基姑剖面,模拟深度0 km,温度20 ℃,压力0 MPa;j.样品XJG-5中粗晶白云岩,甘洛新基姑剖面,模拟深度4 km,温度100 ℃,压力43 MPa;k.样品XJG-5中粗晶白云岩,甘洛新基姑剖面,模拟深度8 km,温度180 ℃,压力124 MPa;l.样品XJG-5中粗晶白云岩,甘洛新基姑剖面,模拟深度10 km,温度220 ℃,压力198 MPa;m.样品LMH-1残余生屑灰质粉晶白云岩,落木河剖面,模拟深度0 km,温度20 ℃,压力449 MPa;n.样品LMH-1残余生屑灰质粉晶白云岩,落木河剖面,模拟深度2 km,温度60 ℃,压力389 MPa;o.样品LMH-1残余生屑灰质粉晶白云岩,落木河剖面,模拟深度4 km,温度100 ℃,压力375 MPa;p.样品LMH-1残余生屑灰质粉晶白云岩,落木河剖面,模拟深度7 km,温度160 ℃,压力526 MPa D.白云岩;Q.石英"
图12
四川盆地二叠系栖霞组-茅口组白云岩阴极发光和扫描电镜特征 a,b.粉晶白云岩几乎不发光,西北乡剖面,P1q,a为单偏光,b为阴极发光;c,d.粉细晶白云岩中的裂缝,新基姑剖面,P1q,c为单偏光,d为阴极发光;e,f.巨晶白云石环带状发光,长江沟剖面,P1q;e为单偏光,f为阴极发光;g,h.泥晶灰岩发育白云石充填脉,新基姑剖面,P1m,g为单偏光,h为阴极发光;i.中晶白云岩孔洞中充填的自形白云石,长江沟剖面,P1q;j.残余颗粒细中晶白云岩中可见裂缝发育,裂缝边缘见自形程度好的白云石晶体,张村剖面,P1m;k.中晶白云岩样品中的萤石,二崖剖面,P1q;l.残余生屑细晶白云岩样品中的磁铁矿,张村剖面,P1m"
1 | Schmoker J W , Halley R B . Carbonate porosity versus depth: A predictable relation for South Florida[J]. AAPG Bulletin, 1982, 66 (12): 2561- 2570. |
2 |
Ehrenberg S N , Nadeau P H . Sandstone versus carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships[J]. AAPG Bulletin, 2005, 89 (4): 435- 445.
doi: 10.1306/11230404071 |
3 | Mazzullo S J , Harris P M . Mesogenetic dissolution: Its role in porosity development in carbonate reservoirs[J]. AAPG Bulletin, 1992, 76 (5): 607- 620. |
4 |
Lambert L , Durlet C , Loreau J P , et al. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): Keys for recognition and timing[J]. Marine and Petroleum Geology, 2006, 23 (1): 79- 92.
doi: 10.1016/j.marpetgeo.2005.04.003 |
5 | Zampetti V . Controlling factors of a Miocene carbonate platform: Implications for platform architecture and off-platform reservoirs (Luconia province, Malaysia)[M]. Tulsa, Oklahoma: Society for Sedimentary Geology Special Publication, 2010: 129- 145. |
6 |
Dutton S P , Loucks R G . Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200-6 700 m) burial, Gulf of Mexico Basin, U.S.A[J]. Marine and Petroleum Geology, 2010, 27 (1): 69- 81.
doi: 10.1016/j.marpetgeo.2009.08.008 |
7 |
Taylor T R , Giles M R , Hathon L A , et al. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality[J]. AAPG bulletin, 2010, 94 (8): 1093- 1132.
doi: 10.1306/04211009123 |
8 |
Ehrenberg S N , Walderhaug O , Bjorlykke K . Carbonate porosity creation by mesogenetic dissolution: Reality or illusion?[J]. AAPG Bulletin, 2012, 96 (2): 217- 233.
doi: 10.1306/05031110187 |
9 |
Ehrenberg S N , Walderhaug O , Bjorlykke K . Carbonate porosity creation by mesogenetic dissolution: Reality or illusion?: Reply[J]. AAPG Bulletin, 2013, 97 (2): 347- 349.
doi: 10.1306/07111212089 |
10 |
Bjørlykke K . Open-system chemical behavior of Wilcox Group mudstones.How is large scale mass transfer at great burial depth in sedimentary basins possible? A discussion[J]. Marine and Petroleum Geology, 2011, 28 (7): 1381- 1382.
doi: 10.1016/j.marpetgeo.2011.01.009 |
11 | Bjørlykke K . Relationships between depositional environments, burial history and rock properties.Some principal aspects of diagenetic process in sedimentary basins[J]. Sedimentary Geology, 2014, 301 (3): 1- 14. |
12 |
Bjørlykke K , Jahren J . Open closed geochemical systems during diagenesis in sedimentary basins: Constrains on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 2012, 96 (12): 2193- 2214.
doi: 10.1306/04301211139 |
13 |
Plummer L N , Wigley T M L , Parkhurst D L . The kinetics of calcite dissolution in CO2-water systems at 5℃ to 60 ℃ and 0.0 to 1.0 atm CO2[J]. American Journal of Science., 1978, 278 (2): 179- 216.
doi: 10.2475/ajs.278.2.179 |
14 | Buhamann D , Dreydrodt W . The kinetics of calcite dissolution and precipitation in geologically relevant situation of karst areas: 1.Open system[J]. Chemical Geology, 1991, 48 (1-4): 189- 211. |
15 | 张单明, 秦善, 刘波, 等. 碳酸盐岩-H2S平衡体系原位溶蚀模拟实验及其地质意义[J]. 北京大学学报(自然科学版), 2015, 51 (4): 745- 754. |
Zhang Shanming , Qin Shan , Liu Bo , et al. In-situsimulation experiment of carbonate-hydrogen sulfide equilibrium system and its geologi-cal significance[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51 (4): 745- 754. | |
16 | 黄康俊, 王炜, 鲍征宇, 等. 埋藏有机酸性流体对四川盆地东北部飞仙关组储层的溶蚀改造作用: 溶解动力学实验研究[J]. 地球化学, 2011, 40 (3): 289- 300. |
Huang Kangjun , Wang Wei , Bao Zhengyu , et al. Dissolution and alteration of Feixianguan Formation in the Sichuan Basin by organic acid fluids under burial condition: Kinetic dissolution experiments[J]. Geochimica, 2011, 40 (3): 289- 300. | |
17 | 王炜, 黄康俊, 鲍征宇, 等. 不同类型鲕粒灰岩储集层溶解动力学特征[J]. 石油勘探与开发, 2011, 38 (4): 495- 502. |
Wang Wei , Huang Kangjun , Bao Zhengyu , et al. Dissolution kinetics of different types of oolitic limestones in northeastern Sichuan Basin[J]. Petroleum Exploration and Development, 38 (4): 495- 502. | |
18 | 杨俊杰, 黄思静, 张文正, 等. 表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟[J]. 沉积学报, 1995, 13 (4): 49- 54. |
Yang Junjie , Huang Sijing , Zhang Wenzheng , et al. Experimental simulation of dissolution for carbonate with different composition under the conditions from epigenesis to burial diagenesis environment[J]. Acta Sedimentologica Sinica, 1995, 13 (4): 49- 54. | |
19 |
黄思静, 成欣怡, 赵杰, 等. 近地表温压条件下白云岩溶解过程的实验研究[J]. 中国岩溶, 2012, 31 (4): 349- 359.
doi: 10.3969/j.issn.1001-4810.2012.04.002 |
Huang Sijing , Chen Xinyi , Zhao Jie , et al. Test on the dolomite dissolution under subaerial temperature and pressure[J]. Carsologica Sinica, 2012, 31 (4): 349- 359.
doi: 10.3969/j.issn.1001-4810.2012.04.002 |
|
20 |
佘敏, 寿建峰, 沈安江, 等. 埋藏有机酸性流体对白云岩储层溶蚀作用的模拟实验[J]. 中国石油大学学报(自然科学版), 2014, 38 (3): 10- 17.
doi: 10.3969/j.issn.1673-5005.2014.03.002 |
She Min , Shou Jianfeng , Shen Anjiang , et al. Experimental simulation of dissolution and alteration of buried organic acid fluid on dolomite reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38 (3): 10- 17.
doi: 10.3969/j.issn.1673-5005.2014.03.002 |
|
21 | 佘敏, 寿建峰, 沈安江, 等. 从表生到深埋藏环境下有机酸对碳酸盐岩溶蚀的实验模拟[J]. 地球化学, 2014, 43 (3): 276- 286. |
She Min , Shou Jianfeng , Shen Anjiang , et al. Experimental simulation of dissolution for carbonate rocks in organic acid under the conditions from epigenesis to deep burial environments[J]. Geochimica, 2014, 43 (3): 276- 286. | |
22 | 范明, 何治亮, 李志明, 等. 碳酸盐岩溶蚀窗的形成及地质意义[J]. 石油与天然气地质, 2011, 32 (4): 499- 505. |
Fan Ming , He Zhiliang , Li Zhiming , et al. Dissolution window of carbonate rocks and its geological significance[J]. Oil & Gas Geology, 2011, 32 (4): 499- 505. | |
23 | 丁茜, 何治亮, 沃玉进, 等. 高温高压条件下碳酸盐岩溶蚀过程控制因素[J]. 石油与天然气地质, 2017, 38 (4): 784- 791. |
Ding Qian , He Yeliang , Wo Yujin , et al. Factors controlling carbonate rock dissolution under high temperature and pressure[J]. Oil & Gas Geology, 2017, 38 (4): 784- 791. | |
24 | 丁茜, 何治亮, 王静彬, 等. 生烃伴生酸性流体对碳酸盐岩储层改造效应的模拟实验[J]. 石油与天然气地质, 2020, 41 (1): 223- 234. |
Ding Qian , He Zhiliang , Wang Jingbin , et al. Simulation experiment of carbonate reservoir modification by source rock-derived acidic fluids[J]. Oil & Gas Geology, 2020, 41 (1): 223- 234. | |
25 | 周义明. 热液金刚石压腔在地质流体研究中的应用[J]. 岩石学报, 2003, 19 (2): 213- 220. |
Zhou Yiming . Hydrothermal diamond-anvil cell: Application to studies of geologic fluids[J]. Acta Petrologica Sinica, 2003, 19 (2): 213- 220. | |
26 | 杨云坤, 刘波, 秦善, 等. 碳酸盐矿物随埋深增加的溶蚀响应机制及其储层意义[J]. 北京大学学报(自然科学版), 2013, 49 (5): 859- 866. |
Yang Yunkun , Liu Bo , Qin Shan , et al. Dissolutionresponse mechanism of the carbonate mineral with the increase of depth and its reservoir significance[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49 (5): 859- 866. | |
27 | 杨云坤, 刘波, 秦善, 等. 基于模拟实验的原位观察对碳酸盐岩深部溶蚀的再认识[J]. 北京大学学报(自然科学版), 2014, 50 (2): 316- 322. |
Yang Yunkun , Liu Bo , Qin Shan , et al. Re-recognition ofdeep carbonate dissolution based on the observation of in-situ simulation experiment[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50 (2): 316- 322. | |
28 |
Zhang S M , Liu B , Qin S , et al. Origin of deep carbonate reservoir in northeastern Sichuan Basin: New insights from in-situ hydrothermal diamond anvil cell experiments[J]. Journal of Central South University, 2017, 24, 1450- 1464.
doi: 10.1007/s11771-017-3549-y |
29 |
Schmidt C , Ziemann M A . In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures[J]. American Mineralogist, 2000, 85 (11-12): 1725- 1734.
doi: 10.2138/am-2000-11-1216 |
30 |
魏国齐, 陈更生, 杨威, 等. 四川盆地北部开江-梁平海槽边界及特征初探[J]. 石油与天然气地质, 2006, 27 (1): 99- 105.
doi: 10.3321/j.issn:0253-9985.2006.01.016 |
Wei Guoqi , Chen Gengsheng , Yang Wei , et al. Preliminary study of the boundary of Kaijiang-Liangping Trough in northern Sichuan Basin and its characteristics[J]. Oil & Gas Geology, 2006, 27 (1): 99- 105.
doi: 10.3321/j.issn:0253-9985.2006.01.016 |
|
31 | 戴永定, 李菊英, 蒋协光, 等. 四川盆地南部二叠系茅口组碳酸岩岩石学与储集性质[J]. 地质科学, 1978, 13 (3): 203- 219. |
Dai yongding , Li Juying , Jiang Xieguang , et al. Petrography of carbonate rocks from the Permian Moukou Formation and their reservoir properties in Southern Sichuan Basin[J]. Scientia Geologia Sinica, 1978, 13 (3): 203- 219. | |
32 | 黎荣, 胡明毅, 杨威, 等. 四川盆地中二叠统沉积相模式及有利储集体分布[J]. 石油与天然气地质, 2019, 40 (2): 369- 379. |
Li Rong , Hu Mingyi , Yang Wei , et al. Sedimentary facies model and favorable reservoir distribution of the Middle Permian in Sichuan Basin[J]. Oil & Gas Geology, 2019, 40 (2): 369- 379. | |
33 | 郑浩夫, 袁璐璐, 刘波, 等. 川西南中二叠统中粗晶白云石流体来源分析[J]. 沉积学报, 2020, 38 (3): 589- 597. |
Zheng Haofu , Yuan Lulu , Liu Bo , et al. Origins ofdolomitization fluids within Middle Permian coarse dolomite, SW Sichuan Basin[J]. Acta Sedimentologica Sinica, 2020, 38 (3): 589- 597. | |
34 |
黄思静, 胡作维, 邹明亮, 等. 封闭系统中的白云石化作用及其石油地质学和矿床学意义——以四川盆地东北部三叠系飞仙关组碳酸盐岩为例[J]. 岩石学报, 2007, 23 (11): 2955- 2962.
doi: 10.3969/j.issn.1000-0569.2007.11.026 |
Huang Sijing , Hu Zuowei , Zou Mingliang , et al. Closed-system dolomitization and the significance for petroleum and economic geology: An example from Feixianguan carbonates, Triassic, NE Sichuan basin of China[J]. Acta Petrologica Sinica, 2007, 23 (11): 2955- 2962.
doi: 10.3969/j.issn.1000-0569.2007.11.026 |
|
35 | 李春荣, 饶松, 胡圣标, 等. 川东南焦石坝页岩气区现今地温场特征[J]. 地球物理学报, 2017, 60 (2): 617- 627. |
Li Chunrong , Rao Song , Hu Shengbiao , et al. Present-day geothermal field of the Jiaoshiba Shale gas area in southeast of the SichuanBasin, SW China[J]. Chinese Journal of Geophysics, 2017, 60 (2): 617- 627. | |
36 |
任梦怡, 江青春, 汪泽成, 等. 川南地区中二叠统茅口组成岩流体来源及演化过程[J]. 天然气工业, 2020, 40 (4): 40- 50.
doi: 10.3787/j.issn.1000-0976.2020.04.005 |
Ren Mengyi , Jiang Qingchun , Wang Zecheng , et al. Source and evolution of diagenetic fluid in the Middle Permian Maokou Formation in the southern Sichuan Basin[J]. Natural Gas Industry, 2020, 40 (4): 40- 50.
doi: 10.3787/j.issn.1000-0976.2020.04.005 |
|
37 |
刘树根, 徐国盛, 徐国强, 等. 四川盆地天然气成藏动力学初探[J]. 天然气地球科学, 2004, 15 (4): 323- 330.
doi: 10.3969/j.issn.1672-1926.2004.04.001 |
Liu Shugen , Xu Guosheng , Xu Guoqiang , et al. Primary study on the dynamics of natural gas pools in SichuanBasin, China[J]. Natural Gas Geoscience, 2004, 15 (4): 323- 330.
doi: 10.3969/j.issn.1672-1926.2004.04.001 |
|
38 | 沈平, 张健, 宋家荣, 等. 四川盆地中二叠统天然气勘探新突破的意义及有利勘探方向[J]. 天然气工业, 2015, 35 (7): 1- 9. |
Shen Ping , Zhang Jian , Song Jiarong , et al. Significance of new breakthrough in and favorable targets of gas exploration in the Middle Permian system, Sichuan Basin[J]. Natural Gas Industry, 2015, 35 (7): 1- 9. | |
39 | Lewan M D, Fisher J B. Organic acids from petroleum source rocks[M]//Pittman E D, Lewan M D. Organic acids in geological processes. Berlin: Springer, 1994: 70-114 |
40 |
Kawamura K , Kaplan I R . Dicarboxylic acids generated by thermal alteration of kerogen and humic acids[J]. Geochimica et Cosmochimica Acta, 1987, 51 (12): 3201- 3207.
doi: 10.1016/0016-7037(87)90128-1 |
41 | 刘玉德. 醋酸酐水解影响因素的研究[J]. 河北化工, 2012, 35 (6): 26- 27. |
Liu Yude . Study on theaffecting factors of acetic anhydride hydrolysis[J]. Hebei Chemical Industry, 2012, 35 (6): 26- 27. | |
42 | 胡安平, 潘立银, 郝毅, 等. 四川盆地二叠系栖霞组、茅口组白云岩储层特征、成因和分布[J]. 海相油气地质, 2018, 23 (2): 41- 54. |
Hu Anping , Pan Liyin , Hao Yi , et al. Origin, characteristics and distribution of dolostone reservoir in Qixia Formation and Maokou Formation, Sichuan Basin, China[J]. Marine Origin Petroleum Geology, 2018, 23 (2): 41- 54. | |
43 | 张涛, 林娟华, 韩月卿, 等. 四川盆地东部中二叠统茅口组热液白云岩发育模式及对储层的改造[J]. 石油与天然气地质, 2020, 41 (1): 132- 143. |
Zhang Tao , Lin Juanhua , Han Yueqing , et al. Pattern of hydrothermal dolomitization in the Middle Permian Maokou Formation, eastern Sichuan Basin, and its alteration on reservoirs herein[J]. Oil & Gas Geology, 2020, 41 (1): 132- 143. | |
44 |
Zheng H , Ma Y , Chi G , et al. Stratigraphic and structural control on hydrothermal dolomitization in the Middle Permian carbonates, Southwestern Sichuan Basin(China)[J]. Minerals, 2019, 9 (1): 32.
doi: 10.3390/min9010032 |
[1] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[2] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[3] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[4] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[5] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[6] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[7] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[8] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[9] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[10] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[11] | 李双建, 李智, 张磊, 李英强, 孟宪武, 王海军. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
[12] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[13] | 刘昇, 范存辉, 张本健, 张亚, 王尉, 罗冰, 白晓亮. 四川盆地东部中二叠统茅口组孤峰段展布特征及其油气地质意义[J]. 石油与天然气地质, 2023, 44(4): 993-1008. |
[14] | 吴冬, 邓虎成, 熊亮, 曹凯旋, 董晓霞, 赵勇, 魏力民, 王同, 马若龙. 四川盆地及其周缘下寒武统麦地坪组-筇竹寺组层序充填和演化模式[J]. 石油与天然气地质, 2023, 44(3): 764-777. |
[15] | 何发岐, 张威, 丁晓琪, 祁壮壮, 李春堂, 孙涵静. 鄂尔多斯盆地乌审旗古隆起对岩溶气藏的控制机理[J]. 石油与天然气地质, 2023, 44(2): 276-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||