石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (6): 1354-1364.doi: 10.11743/ogg20210610
林潼1(), 王铜山1, 潘文庆2, 袁文芳2, 李秋芬1, 马卫1
收稿日期:
2020-08-17
出版日期:
2021-12-28
发布日期:
2021-12-16
第一作者简介:
林潼(1980-), 男, 博士、高级工程师, 油气地质研究与实验。E-mail: 基金项目:
Tong Lin1(), Tongshan Wang1, Wenqing Pan2, Wenfang Yuan2, Qiufen Li1, Wei Ma1
Received:
2020-08-17
Online:
2021-12-28
Published:
2021-12-16
摘要:
膏岩作为优质的油气盖层已经得到了普遍认同,但并非所有的膏岩层都具有封闭油气的能力,膏岩作为油气的封盖层需要一定的地质条件。以塔里木盆地膏岩盖层为研究对象,对采自井下岩心和露头的膏岩样品开展了显微观察、物性分析、突破压力测试以及三轴应力试验。研究结果认为:①初始形成的膏岩和盐岩都具有非常强的物性封闭能力,但是在埋藏演化过程中石膏发生脱水作用后逐渐向硬石膏转化,转化过程中形成的孔隙空间使得物性封闭能力减弱;②塔里木盆地台盆区内石膏向硬石膏转化的最大深度在2 000 m附近,脱水后的硬石膏抗剪切能力与未脱水的石膏相比存在显著差异;③膏岩在埋藏演化过程中受地层温度和围压的影响封闭性发生动态变化,最终能否成为优质盖层取决于埋藏条件下膏岩的封闭能力与抗剪切能力。
中图分类号:
表1
塔里木盆地膏岩、盐岩样品的物性与突破压力值"
样品编号 | 岩性 | 地层 | 孔隙度/% | 渗透率/ (10-3 μm2) | 突破压力/MPa |
W-st1-1 | 细晶硬石膏 | 2.85 | 0.003 78 | 3.1 | |
W-st1-2 | 粉晶硬石膏 | 2.43 | 0.002 86 | 3.5 | |
W-zhs4-1 | 硬石膏 | 6.05 | 0.386 15 | 0.5 | |
W-zhs4-2 | 粉晶硬石膏 | 3.50 | 0.016 84 | 1.9 | |
W-bt5-1 | 盐岩 | 0.65 | 0.000 03 | 23.9* | |
W-tc2-1 | 细晶硬石膏 | E1a | 3.90 | 0.227 95 | 1.7 |
W-tc2-2 | 白云质细晶硬石膏 | E1a | 2.40 | 0.196 10 | 4.1 |
W-tc2-3 | 中-细晶硬石膏 | E1a | 5.85 | 1.195 68 | 0.5 |
W-tc2-4 | 细晶硬石膏 | E1a | 4.95 | 0.261 98 | 0.9 |
W-tc2-5 | 细晶硬石膏 | E1a | 2.90 | 0.438 37 | 3.1 |
W-tc2-6 | 细晶硬石膏 | E1a | 2.00 | 0.019 29 | 5.1 |
W-gd1-2 | 细晶硬石膏 | C | 1.55 | 0.014 90 | 6.1 |
O-xhz | 石膏 | C1+2k | 6.80 | 0.058 20 | 1.5 |
O-awt | 盐岩 | E1+2 | 0.70 | 0.000 02 | 23.9* |
1 | 金之钧, 周雁, 云金表, 等. 我国海相地层膏盐岩盖层分布与近期油气勘探方向[J]. 石油与天然气地质, 2010, 31 (6): 715- 724. |
Jin Zhijun , Zhou Yan , Yun Jinbiao , et al. Distribution of gypsum salt cap rock and near term hydrocarbon exploration targets in the marine sequences of China[J]. Oil & Gas Geology, 2010, 31 (6): 715- 724. | |
2 |
徐士林, 吕修祥, 杨明慧, 等. 库车坳陷膏盐岩对异常高压保存的控制作用[J]. 西安石油大学学报(自然科学版), 2004, 19 (4): 5- 9.
doi: 10.3969/j.issn.1673-064X.2004.04.002 |
Xu Shilin , Lv Xiuxiang , Yang Minghui , et al. Controlling effect of gypsum and salt rocks on abnormally high pressure in Kuche Depression[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2004, 19 (4): 5- 9.
doi: 10.3969/j.issn.1673-064X.2004.04.002 |
|
3 |
王东旭, 曾溅辉, 宫秀梅. 膏盐岩层对油气成藏的影响[J]. 天然气地球科学, 2005, 16 (3): 329- 333.
doi: 10.3969/j.issn.1672-1926.2005.03.015 |
Wang Dongxu , Zeng Jianhui , Gong Xiumei . Impact of gypsolith on the formation of oil and gas reservoir[J]. Natureal Gas Geoscien, 2005, 16 (3): 329- 333.
doi: 10.3969/j.issn.1672-1926.2005.03.015 |
|
4 |
何娟, 何登发, 李顺利, 等. 南大西洋被动大陆边缘盆地大油气田形成条件与分布规律——以巴西桑托斯盆地为例[J]. 中国石油勘探, 2011, 16 (3): 57- 67.
doi: 10.3969/j.issn.1672-7703.2011.03.006 |
He Juan , He Dengfa , Li Shunli , et al. Formation and distribution of giant oil and gas fields in passive continental margin of South Atlantic Ocean——A case study of santos basin in Brazil[J]. China Petroleum Exploration, 2011, 16 (3): 57- 67.
doi: 10.3969/j.issn.1672-7703.2011.03.006 |
|
5 | 韩彧, 黄娟, 赵雯. 墨西哥湾盆地深水区油气分布特征及勘探潜力[J]. 石油实验地质, 2015, 37 (4): 473- 478. |
Han Yu , Huang Juan , Zhao Wen . Distribution features and exploration potential of oil and gas in a deepwater area of the Gulf of Mexico Basin[J]. Petroleum Geology & Experiment, 2015, 37 (4): 473- 478. | |
6 | 刘祚冬, 李江海. 西非被动大陆边缘盆地盐构造对油气的控制作用[J]. 石油勘探与开发, 2011, 38 (2): 196- 202. |
Liu Zuodong , Li Jianghai . Control of salt structures on hydrocarbons in the passive continental margin of West Afric[J]. Petroleum Exploration and Development, 2011, 38 (2): 196- 202. | |
7 |
王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19 (2): 1- 13.
doi: 10.3969/j.issn.1672-7703.2014.02.001 |
Wang Zhaoming , Xie Huiwen , Chen Yongquan , et al. Discovery and exploration of cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19 (2): 1- 13.
doi: 10.3969/j.issn.1672-7703.2014.02.001 |
|
8 |
金之钧, 龙胜祥, 周雁, 等. 中国南方膏盐岩分布特征[J]. 石油与天然气地质, 2006, 27 (5): 571- 583.
doi: 10.3321/j.issn:0253-9985.2006.05.001 |
Jin Zhijun , Long Shengxiang , Zhou Yan , et al. A study on the distribution of saline-deposit in the southern China[J]. Oil & Gas Geo-logy, 2006, 27 (5): 571- 583.
doi: 10.3321/j.issn:0253-9985.2006.05.001 |
|
9 | 李双建, 周雁, 孙冬胜. 评价盖层有效性的岩石力学实验研究[J]. 石油实验地质, 2013, 35 (5): 574- 578. |
Li Shuangjian , Zhou Yan , Sun Dongsheng . Rock mechanic experiment study of evaluation on cap rock effectiveness[J]. Petroleum Geology & Experiment, 2013, 35 (5): 574- 578. | |
10 | 吴海, 赵孟军, 卓勤功, 等. 膏盐岩对地层温度及烃源岩热演化的影响定量分析——以塔里木库车前陆盆地为例[J]. 石油勘探与开发, 2016, 43 (4): 550- 558. |
Wu Hai , Zhao Mengjun , Zhou Qingong , et al. Quantitative analysis of the effect of salt on geothermal temperature and sourcerock evolution: A case study of Kuqa foreland basin, Western China[J]. Petroleum Exploration and Development, 2016, 43 (4): 550- 558. | |
11 |
梁杰, 龚建明, 成海燕. 墨西哥湾盐岩分布对油气成藏的控制作用[J]. 海洋地质动态, 2010, 26 (1): 25- 30.
doi: 10.3969/j.issn.1009-2722.2010.01.005 |
Liang Jie , Gong Jianming , Cheng Haiyan . Control of salt rock distribution on oil and gas popling in the gulf of Mexico[J]. Marine Geology Letters, 2010, 26 (1): 25- 30.
doi: 10.3969/j.issn.1009-2722.2010.01.005 |
|
12 | Mcbride B C , Rowan M G , Weimer P . The evolution of allochthonous salt systems, northern Green Canyon and Ewing Bank (offshore Louisiana), northern gulf of Mexico[J]. AAPG Bulletin, 1998, 82 (5B): 1013- 1036. |
13 | Jowett E C , CathlesⅢ L M , Davis B W . Predicting depths of gypsum dehydration in evaporitic sedimentary basins[J]. AAPG Bulletin, 1993, 77 (2): 402- 413. |
14 |
卓勤功, 赵孟军, 李勇, 等. 库车前陆盆地古近系岩盐对烃源岩生气高峰期的迟缓作用及其意义[J]. 天然气地球科学, 2014, 25 (12): 1903- 1912.
doi: 10.11764/j.issn.1672-1926.2014.12.1903 |
Zhuo Qingong , Zhao Mengjun , Li Yong , et al. The delay of palegene on the gas generation peak of source rocks and its significance in Kuqa foreland basin[J]. Natural Gas Geoscience, 2014, 25 (12): 1903- 1912.
doi: 10.11764/j.issn.1672-1926.2014.12.1903 |
|
15 | 曹养同, 刘成林, 杨海军, 等. 新疆库车盆地古近系-新近系蒸发岩沉积旋回识别及对比[J]. 古地理学报, 2010, 12 (1): 31- 41. |
Cao Yangtong , Liu Chenglin , Yang Haijun , et al. Identification and correlation of the Paleogene and Neogene evaporites sedimentary cycles in Kuqa Basin, Xinjiang[J]. Journal of Palaeogeography, 2010, 12 (1): 31- 41. | |
16 | 刘忠宝, 杨圣彬, 焦存礼, 等. 塔里木盆地巴楚隆起中、下寒武统高精度层序地层与沉积特征[J]. 石油与天然气地质, 2012, 33 (1): 70- 76. |
Liu Zhongbao , Yang Shengbin , Jiao Cunli , et al. High resolution sequence stratigraphy and sedimentary characteristics of the Middle-Lower Cambrian in Bachu Uplift, the Tarim Basin[J]. Oil & Gas geology, 2012, 33 (1): 70- 76. | |
17 | 付广, 陈章明, 姜振学. 盖层物性封闭能力的研究方法[J]. 中国海上油气, 1995, 9 (2): 83- 88. |
Fu Guang , Chen Zhangming , Jiang Zhenxue . Research method capi-llary sealing abillity of cap rocks[J]. China Offshoer Oil and Gas(Geology), 1995, 9 (2): 83- 88. | |
18 | 卓勤功, 雷永良, 边永国, 等. 准南前陆冲断带下组合泥岩盖层封盖能力[J]. 新疆石油地质, 2020, 41 (1): 100- 107. |
Zhuo Qingong , Lei Yongliang , Bian Yongguo , et al. Mudstone caprock sealing capacity of the lower reservoir-forming combination in the foreland thrust belt of the southern margin, Junggar Basin[J]. Xinjiang Petroleum Geology, 2020, 41 (1): 100- 107. | |
19 | 黄文彪, 詹卓琛, 逯瑞敬, 等. 致密油微观充注动态过程及控制因素[J]. 石油与天然气地质, 2019, 40 (6): 1197- 1204. |
Huang Wenbiao , Zhan Zhuochen1 , Lu Ruijing , et al. Microscope dynamic process and controlling factors of oil charging in tight rese-rvoir[J]. Oil & Gas Geology, 2019, 40 (6): 1197- 1204. | |
20 | 吕延防, 陈章明, 付广, 等. 盖岩排替压力研究[J]. 大庆石油学院学报, 1993, 17 (4): 1- 8. |
Lu Yanfang , Chen Zhangming , Fu Guang , et al. Research on the displacement pressure of caprock[J]. Journal of Daqing Petroleum Institute, 1993, 17 (4): 1- 8. | |
21 | Ito D , Akaku K , Okaba T , et al. Measurement of threshold capillary pressure for seal rocks using the step-by-step approach and the residual pressure approach[J]. Energy Procedia, 2011, 4 (22): 5211- 5218. |
22 | Horseman S T , Harrington J F , Sellin P . Gas migration in clay barriers[J]. Engineering Geology, 1999, 54 (1): 139- 149. |
23 | Harrington J F, Horseman S T. Gas transport properties of clays and mudrocks[M]//Aplin A C, Fleet A J, Macquaker J H S. Muds and Mudstones: Physical and Fluid Properties. London: Geological Society, 1999, 158(1): 107-124. |
24 | 黄志龙, 郝石生. 盖层突破压力及排替压力的求取方法[J]. 新疆石油地质, 1994, 15 (2): 163- 166. |
Huang Zhilong , Hao Shisheng . A method of estimating breakthrough pressure and displacement pressure of caprock[J]. Xinjia-ng Petroleum Geology, 1994, 15 (2): 163- 166. | |
25 |
Hildenbrand A , Schlomer S , Krooss B M . Gas breakthrough experiments on fine-grained sedimentary rocks[J]. Geofluids, 2002, 2 (1): 3- 23.
doi: 10.1046/j.1468-8123.2002.00031.x |
26 |
Kawauraa K , Akaku K , Nakano N , et al. Examination of methods to measure capillary threshold pressures of politic rock samples[J]. Energy Procedia, 2013, 37, 5411- 5418.
doi: 10.1016/j.egypro.2013.06.459 |
27 | 高帅, 魏宁, 李小春. 盖岩CO2突破压测试方法综述[J]. 岩土力学, 2015, 36 (9): 2716- 2727. |
Gao Shuai , Wei Ning , Li Xiaochun . Review of CO2 breakthrough pressure measurement methods on caprocks[J]. Rock and Soil Mechanics, 2015, 36 (9): 2716- 2727. | |
28 |
范明, 陈宏宇, 俞凌杰, 等. 比表面积与突破压力联合确定泥岩盖层评价标准[J]. 石油实验地质, 2011, 33 (1): 87- 90.
doi: 10.3969/j.issn.1001-6112.2011.01.014 |
Fan Ming , Chen Hongyu , Yu Lingjie , et al. Evalution standard of mudstone cap rock combining specific surface area and break through pressure[J]. Petroleum Geology & Experiment, 2011, 33 (1): 87- 90.
doi: 10.3969/j.issn.1001-6112.2011.01.014 |
|
29 |
赵国英, 阎炜, 陈光进, 等. 甲烷+氮气/水体系高压界面张力的测定与计算[J]. 石油大学学报(自然科学版), 2002, 26 (1): 75- 78.
doi: 10.3321/j.issn:1000-5870.2002.01.024 |
Zhao Guoying , Yan Wei , Chen Guangjin , et al. Measurement and calculation of high-pressure interfacial tension of methane+nitrogen/water system[J]. Journal of the University of Petroleum China (Edition of Natural Science), 2002, 26 (1): 75- 78.
doi: 10.3321/j.issn:1000-5870.2002.01.024 |
|
30 | 王益维, 汪友平, 孟祥龙, 等. 低成熟度页岩油加热改质热解动力学及地层渗透性[J]. 石油与天然气地质, 2019, 40 (3): 678- 684. |
Wang Yiwei , Wang Youping , Meng Xianglong , et al. Organic matter pyrolysis kinetics and formation permeability variation during upgrading process of low-maturity shale oil[J]. Oil & Gas Geolo-gy, 2019, 40 (3): 678- 684. | |
31 |
Olgaard D L , Ko S C , Wong T F . Deformation and pore pressure in dehydrating gypsum under transiently drained conditions[J]. Tectonophysics, 1995, 245 (3-4): 237- 248.
doi: 10.1016/0040-1951(94)00237-4 |
32 |
黄英华, 潘懿, 唐绍辉. 硬石膏常规三轴压缩性能试验研究[J]. 中国非金属矿工业导刊, 2008, 72 (6): 34- 36.
doi: 10.3969/j.issn.1007-9386.2008.06.010 |
Huang Yinghua , Pan Yi , Tang Shaohui . A study on triaxial compression mechanical tests of anhydrite[J]. China Non-metal Mini-ng Industry Guide, 2008, 72 (6): 34- 36.
doi: 10.3969/j.issn.1007-9386.2008.06.010 |
|
33 |
Nygard R , Gutierrez M , Bratli R K , et al. Brittle-ductile transition, shear failure and leakage in shales and mudrocks[J]. Marine and Petroleum Geology, 2006, 23 (2): 201- 212.
doi: 10.1016/j.marpetgeo.2005.10.001 |
34 | Murray R C . Origin and diagenesis of gypsum and anhydrite[J]. Journal of Sedimentary Petrology, 1964, 34 (3): 512- 523. |
35 |
Amadi F O , Major R P , Baria L R . Origins of gypsum in deep carbonate reservoirs: Implications for hydrocarbon exploration and production[J]. AAPG Bulletin, 2012, 96 (2): 375- 390.
doi: 10.1306/05101110179 |
36 |
Hangx S J T , Spiersa C J , Peacha C J . The mechanical behavior of anhydrite and the effect of deformation on permeability development-implications for caprock integrity during geological storage of CO2[J]. Energy Procedia, 2011, 4, 5358- 5363.
doi: 10.1016/j.egypro.2011.02.518 |
37 | Zen E A . Solubility measurements in the system CaSO4-NaCl-H2O at 35°, 50°, and 70° cand one atmosphere pressure[J]. Journal of Petrology, 1965, 6 (1): 24- 164. |
38 | 俞凌杰, 张文涛, 范明, 等. 膏岩三轴压缩试验及高温相变特征研究[J]. 岩土力学, 2012, 33 (11): 3318- 3330. |
Yu Lingjie , Zhang Wentao , Fan Ming , et al. Study of gypsum rock triaxial compression experiment and characteristicof high temperature phase transition[J]. Rock and Soil Mechanics, 2012, 33 (11): 3318- 3330. | |
39 | Llana-Funez S, Faulkner D R, Wheeler J. Fluid flow properties of Volterra Gypsum during experimental deformation at low strain rates monitored through simultaneous permeability measurement[C]//. EGU General Assembly Conference Abstracts. Vienna: EGU, 2009: 1030. |
40 | Milsch H , Priegnitz M . Evolution of microstructure and elastic wave velocities in dehydrated gypsum samples[J]. Solid Earth, 2012, 39 (24): 1- 6. |
41 |
Wong T F , Ko S C , Olgaard D L . Generation and maintenance of pore pressure excess in a dehydrating system 2. Theoretical analysis[J]. Journal of Geophysical Research Atmospheres, 1997, 102 (B1): 841- 852.
doi: 10.1029/96JB02484 |
42 | 卓勤功, 赵孟军, 李勇, 等. 膏盐岩盖层封闭性动态演化特征与油气成藏——以库车前陆盆地冲断带为例[J]. 石油学报, 2014, 35 (5): 847- 856. |
Zhuo Qinggong , Zhao Mengjun , Li Yong , et al. Dynamic sealing evolution and hydrocarbon accumulation of evaporite cap rocks: An example from Kuqa foreland basin thrust belt[J]. Acta Petrolei Sinaca, 2014, 35 (5): 847- 856. | |
43 |
Serafeimidis K , Anagnostou G . The solubilities and thermodynamic equilibrium of anhydrite and gypsum[J]. Rock Mechanics and Rock Engineering, 2015, 48 (1): 15- 31.
doi: 10.1007/s00603-014-0557-1 |
44 | Hardie L A . The gypsum-anhydrite equilibrium at one atmosphere pressure[J]. The American Mineralogist, 1967, 52, 171- 200. |
45 | Macdonald G J F . Anhydrite-gypsum equilibrium relations[J]. American Journal of Science, 1953, (235): 884- 898. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[8] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[9] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[10] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[11] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
[12] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[13] | 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜—大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. |
[14] | 李斌, 赵星星, 邬光辉, 韩剑发, 关宝珠, 沈春光. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质, 2023, 44(2): 308-320. |
[15] | 张红波, 周雨双, 沙旭光, 邓尚, 沈向存, 姜忠正. 塔里木盆地顺北5号走滑断裂隆起段发育特征与演化机制[J]. 石油与天然气地质, 2023, 44(2): 321-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||