石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (6): 1365-1375.doi: 10.11743/ogg20210611
陈家旭1(), 王斌1,2, 郭小文1,*(
), 曹自成3, 刘永立3, 耿锋3, 张旭友1, 徐豪1, 赵建新1,4
收稿日期:
2020-01-02
出版日期:
2021-12-28
发布日期:
2021-12-16
通讯作者:
郭小文
E-mail:jiaxuchen@cug.edu.cn;guoxw@cug.edu.cn
第一作者简介:
陈家旭(1995-), 男, 博士研究生, 油气成藏年代学。E-mail: 基金项目:
Jiaxu Chen1(), Bin Wang1,2, Xiaowen Guo1,*(
), Zicheng Cao3, Yongli Liu3, Feng Geng3, Xuyou Zhang1, Hao Xu1, Jianxin Zhao1,4
Received:
2020-01-02
Online:
2021-12-28
Published:
2021-12-16
Contact:
Xiaowen Guo
E-mail:jiaxuchen@cug.edu.cn;guoxw@cug.edu.cn
摘要:
多旋回叠合盆地油气成藏绝对时间一直是油气成藏研究需要解决的一个重大难题。以塔里木盆地塔河油田为例,在油包裹体观察和荧光光谱分析的基础上,通过阴极发光和微量元素分析划分方解石脉体形成期次,对不同期次方解石脉体进行激光原位U-Pb同位素定年获得油气充注绝对时间。研究结果表明,塔里木盆地塔河油田奥陶系储层方解石脉体中发育黄色和蓝白色荧光两种类型油包裹体。阴极发光和微区微量元素的差异性指示存在两期方解石脉体,其中发育黄色荧光原生油包裹体,两期方解石的年龄分别对应两期黄色荧光原油的充注时间。方解石脉体激光原位U-Pb同位素定年结果显示,第一期黄色荧光原油的充注时间为329.7 Ma±1.6 Ma,第二期充注时间为249.3 Ma±2.6 Ma~220.5 Ma±7.3 Ma。激光原位U-Pb同位素定年技术结合烃类流体包裹体分析可以很好地用于确定多旋回叠合盆地油气成藏时间,对重建油气成藏动态过程具有重要作用。
中图分类号:
1 | 何登发, 贾承造, 周新源, 等. 多旋回叠合盆地构造控油原理[J]. 石油学报, 2005, 26 (3): 1- 9. |
He Dengfa , Jia Chengzao , Zhou Xinyuan , et al. Control principles of structures and tectonics over hydrocarbon accumulation and distribution in multi-stage superimposed basins[J]. Acta Petrolei Sinica, 2005, 26 (3): 1- 9. | |
2 |
张光亚, 赵文智, 王红军, 等. 塔里木盆地多旋回构造演化与复合含油气系统[J]. 石油与天然气地质, 2007, 28 (5): 653- 663.
doi: 10.3321/j.issn:0253-9985.2007.05.017 |
Zhang Guangya , Zhao Wenzhi , Wang Hongjun , et al. Multicycle tectonic evolution and composite petroleum systems in the Tarim Basin[J]. Oil & Gas Geology, 2007, 28 (5): 653- 663.
doi: 10.3321/j.issn:0253-9985.2007.05.017 |
|
3 | Zhijun Jin , Qingchen Wang . Recent developments in study of the typical superimposed basins and petroleum accumulation in China: Exemplified by the Tarim Basin[J]. Science in China (Series D): Earth Sciences, 2004, 47 (Supp. II): 1- 15. |
4 |
赵靖舟. 油气成藏年代学研究进展及发展趋势[J]. 地球科学进展, 2002, 17 (3): 378- 383.
doi: 10.3321/j.issn:1001-8166.2002.03.013 |
Zhao Jingzhou . Geochronology of petroleum accumulation: new advances and the future trend[J]. Advance in Earth Sciences, 2002, 17 (3): 378- 383.
doi: 10.3321/j.issn:1001-8166.2002.03.013 |
|
5 |
蔡李梅, 陈红汉, 李兆奇, 等. 油气成藏过程中的同位素测年方法评述[J]. 沉积与特提斯地质, 2008, 28 (4): 18- 23.
doi: 10.3969/j.issn.1009-3850.2008.04.004 |
Cai Limei , Chen Honghan , Li Zhaoqi , et al. Isotopic dating techniques and their applications to the geochronology of hydrocarbon migration and accumulation: An overview[J]. Sedimentary Geology and Tethyan Geology, 2008, 28 (4): 18- 23.
doi: 10.3969/j.issn.1009-3850.2008.04.004 |
|
6 |
赵靖舟, 李秀荣. 成藏年代学研究现状[J]. 新疆石油地质, 2002, 23 (3): 257- 261.
doi: 10.3969/j.issn.1001-3873.2002.03.025 |
Zhao Jingzhou , Li Xiurong . Methods of geochronology of petroleum accumulation[J]. Xinjiang Petroleum Geology, 2002, 23 (3): 257- 261.
doi: 10.3969/j.issn.1001-3873.2002.03.025 |
|
7 |
陈红汉. 油气成藏年代学研究进展[J]. 石油与天然气地质, 2007, 28 (2): 143- 150.
doi: 10.3321/j.issn:0253-9985.2007.02.003 |
Chen Honghan . Advances in geochronology of hydrocarbon accumulation[J]. Oil & Gas Geology, 2007, 28 (2): 143- 150.
doi: 10.3321/j.issn:0253-9985.2007.02.003 |
|
8 | Lee M C , Aronson J L , Savin S M . K/Ar dating of time of gas emplacement in Rotliegendes sandstone, Netherlands[J]. AAPG Bulletin, 1985, 69 (9): 1381- 1385. |
9 | Li Q , Parrish R R , Horstwood M S A , et al. U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology, 2014, 376 (6): 76- 83. |
10 |
Coogan L A , Parrish R R , Roberts N M W . Early hydrothermal carbon uptake by the upper oceanic crust: Insight from in situ U-Pb dating[J]. Geology, 2016, 44 (2): 147- 150.
doi: 10.1130/G37212.1 |
11 |
Nuriel P , Weinberger R , Kylander-Clark A R C , et al. The onset of the Dead Sea transform based on calcite age-strain analyses[J]. Geology, 2017, 45 (7): 587- 590.
doi: 10.1130/G38903.1 |
12 |
Beaudoin N , Lacombe O , Roberts N M W , et al. U-Pb dating of calcite veins reveals complex stress evolution and thrust sequence in the Bighorn Basin, Wyoming, USA[J]. Geology, 2018, 46 (11): 1015- 1018.
doi: 10.1130/G45379.1 |
13 |
Lawson M , Shenton B J , Stolper D A , et al. Deciphering the diagenetic history of the El Abra Formation of eastern Mexico using reordered clumped isotope temperatures and U-Pb dating[J]. Geological Society of America Bulletin, 2018, 130 (3-4): 617- 629.
doi: 10.1130/B31656.1 |
14 | 贺婷婷, 段太忠, 赵磊, 等. 塔里木盆地塔河油田T区三叠纪沉积模式[J]. 石油与天然气地质, 2019, 40 (4): 822- 834. |
He Tingting , Duan Taizhong , Zhao Lei , et al. Triassic sedimentary model in Block T of Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2019, 40 (4): 822- 834. | |
15 | 刘永立, 尤东华, 高利君, 等. 塔河油田塔深6井蓬莱坝组硅质岩成因及其地质意义[J]. 石油与天然气地质, 2020, 41 (1): 83- 91. |
Liu Yongli , You Donghua , Gao Lijun , et al. Genesis and geological significance of siliceous rock in Penglaiba Formation in Well Tashen 6, Tahe oilfield[J]. Oil & Gas Geology, 2020, 41 (1): 83- 91. | |
16 |
何登发, 贾承造, 李德生, 等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005, 26 (1): 64- 77.
doi: 10.3321/j.issn:0253-9985.2005.01.010 |
He Dengfa , Jia Chengzao , Li Desheng , et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 2005, 26 (1): 64- 77.
doi: 10.3321/j.issn:0253-9985.2005.01.010 |
|
17 | 施伟军, 席斌斌, 秦建中, 等. 单体油气包裹体激光剥蚀在线成分分析技术——以塔河油田奥陶系储层为例[J]. 石油学报, 2016, 37 (2): 196- 206. |
Shi Weijun , Xi Binbin , Qin Jianzhong , et al. Online laser ablation compositional analysis technique for single hydrocarbon inclusion: A case study of the Ordovician reservoirs in Tahe oilfield, Tarim Basin, NW China[J]. Acta Petrolei Sinica, 2016, 37 (2): 196- 206. | |
18 | 张抗. 塔河油田的发现及其地质意义[J]. 石油与天然气地质, 1999, 20 (2): 24- 28. |
Zhang Kang . The discovery of Tahe oilfield and its geologic implication[J]. Oil & Gas Geology, 1999, 20 (2): 24- 28. | |
19 | 陈红汉, 吴悠, 丰勇, 等. 塔河油田奥陶系油气成藏期次及年代学[J]. 石油与天然气地质, 2014, 35 (6): 806- 819. |
Chen Honghan , Wu You , Feng Yong , et al. Timing and chronology of hydrocarbon charging in the Ordovician of Tahe oilfield, Tarim Basin, NW China[J]. Oil & Gas Geology, 2014, 35 (6): 806- 819. | |
20 |
顾忆. 塔里木盆地北部塔河油田油气藏成藏机制[J]. 石油实验地质, 2000, 22 (4): 307- 312.
doi: 10.3969/j.issn.1001-6112.2000.04.004 |
Gu Yi . Forming mechanism of hydrocarbon pools in Tahe oilfield of the northern Tarim Basin[J]. Petroleum Geology & Experiment, 2000, 22 (4): 307- 312.
doi: 10.3969/j.issn.1001-6112.2000.04.004 |
|
21 |
高波, 刘文汇, 范明, 等. 塔河油田成藏期次的地球化学示踪研究[J]. 石油实验地质, 2006, 28 (3): 276- 280.
doi: 10.3969/j.issn.1001-6112.2006.03.015 |
Gao Bo , Liu Wenhui , Fan Ming , et al. Study on geochemical tracking for the periods of reservoir forming of oil and gas in the Tahe oilfield[J]. Petroleum Geology & Experiment, 2006, 28 (3): 276- 280.
doi: 10.3969/j.issn.1001-6112.2006.03.015 |
|
22 | 潘安阳, 秦建中, 姚素平, 等. 单体烃类包裹体在油气地球化学中的应用——以塔河油田为例[J]. 石油实验地质, 2017, 39 (5): 675- 681. |
Pan Anyang , Qin Jianzhong , Yao Suping , et al. Application of single hydrocarbon inclusions in petroleum geochemistry: A case study of the Tahe oilfield[J]. Petroleum Geology & Experiment, 2017, 39 (5): 675- 681. | |
23 |
Wang T G , He F Q , Wang C J , et al. Oil filling history of the Ordovician oil reservoir in the major part of the Tahe Oilfield, Tarim Basin, NW China[J]. Organic Geochemistry, 2008, 39 (11): 1637- 1646.
doi: 10.1016/j.orggeochem.2008.05.006 |
24 | 沈安江, 胡安平, 程婷, 等. 激光原位U-Pb定年技术及其在碳酸盐岩成岩-孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46 (6): 1- 13. |
Shen Anjiang , Hu Anping , Cheng Ting , et al. Laser ablation multi-collector inductively coupled plasma mass spectrometry in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46 (6): 1- 13. | |
25 | 刘恩涛, 赵建新, 潘松圻, 等. 盆地流体年代学研究新技术: 方解石激光原位U-Pb定年法[J]. 地球科学, 2019, 44 (3): 698- 712. |
Liu Entao , Zhao Jianxin , Pan Songqi , et al. A new technology of basin fluid geochronology: in-situ U-Pb dating of calcite[J]. Earth Science, 2019, 44 (3): 698- 712. | |
26 | 郭小文, 陈家旭, 袁圣强, 等. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年带的约束——以渤海湾盆地东营凹陷为例[J]. 石油学报, 2020, 41 (3): 284- 291. |
Guo Xiaowen , Chen Jiaxu , Yuan Shengqiang , et al. Constraint of in-situ calcite U-Pb dating by laser ablation on geochronology of hydrocarbon accumulation in petroliferous basins: a case study of Dongying sag in the Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41 (3): 284- 291. | |
27 | 胡安平, 沈安江, 梁峰, 等. 激光铀铅同位素定年技术在塔里木盆地肖尔布拉克组储层孔隙演化研究中的应用[J]. 石油与天然气地质, 2020, 41 (1): 37- 49. |
Hu Anping , Shen Anjiang , Liang Feng , et al. Application of laser in-situ U-Pb dating to reconstruct the reservoir porosity evolution in the Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41 (1): 37- 49. | |
28 | Ludwig K . User's manual for isoplot 3.00:A geochronology toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronological Center Special Publication, 2003: 1- 71. |
29 |
Ubide T , Mollo S , Zhao J X , et al. Sector-zoned clinopyroxene as a recorder of magma history, eruption triggers, and ascent rates[J]. Geochimica et Cosmochimica Acta, 2019, 251, 265- 283.
doi: 10.1016/j.gca.2019.02.021 |
30 |
Chen L , Liu Y S , Hu Z C , et al. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J]. Chemical Geology, 2011, 284 (3-4): 283- 295.
doi: 10.1016/j.chemgeo.2011.03.007 |
31 | 赵彦彦, 李三忠, 李达, 等. 碳酸盐(岩)的稀土元素特征及其古环境指示意义[J]. 大地构造与成矿学, 2019, 43 (1): 141- 167. |
Zhao Yanyan , Li Sanzhong , Li Da , et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica Et Metallogenia, 2019, 43 (1): 141- 167. | |
32 |
Alexander B W , Bau M , Andersson P , et al. Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9Ga Pongola Supergroup, South Africa[J]. Geochimica et Cosmochimica Acta, 2008, 72 (2): 378- 394.
doi: 10.1016/j.gca.2007.10.028 |
33 |
Douville E , Bienvenu P , Charlou J L , et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63 (5): 627- 643.
doi: 10.1016/S0016-7037(99)00024-1 |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[8] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[9] | 李勇, 朱治同, 吴鹏, 申陈州, 高计县. 鄂尔多斯盆地东缘上古生界致密储层含气系统压力演化[J]. 石油与天然气地质, 2023, 44(6): 1568-1581. |
[10] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[11] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[12] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
[13] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[14] | 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜—大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. |
[15] | 李斌, 赵星星, 邬光辉, 韩剑发, 关宝珠, 沈春光. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质, 2023, 44(2): 308-320. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 238
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 322
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||