石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (2): 286-296.doi: 10.11743/ogg20220204
陈国辉1,2,3(), 蒋恕1,2,3, 李醇1,2,3, 李思思1,2,3, 彭鹏1,2,3, 莫兰1,2,3, 张钰莹1,2,3, 张鲁川1,2,3, 张天宇1,2,3
收稿日期:
2020-10-09
修回日期:
2022-01-20
出版日期:
2022-04-01
发布日期:
2022-03-11
第一作者简介:
陈国辉(1986—),男,教授、博士生导师,页岩油气赋存机理与勘探开发。E?mail: 基金项目:
Guohui Chen1,2,3(), Shu Jiang1,2,3, Chun Li1,2,3, Sisi Li1,2,3, Peng Peng1,2,3, Lan Mo1,2,3, Yuying Zhang1,2,3, Luchuan Zhang1,2,3, Tianyu Zhang1,2,3
Received:
2020-10-09
Revised:
2022-01-20
Online:
2022-04-01
Published:
2022-03-11
摘要:
中国陆相页岩油资源潜力巨大,但因成熟度偏低、油质重、粘度大、地层流体压力低且孔渗条件差而难以有效开发。原位加热技术可显著提高其采收率,储层改质是该技术的重要目标之一。基于前人对页岩孔隙演化的研究以及对油页岩原位加热过程中储层物性改质的探索,通过理论分析,明确了储层改质效应由孔隙演化和热致裂两种机制控制。孔隙演化主要由有机质裂解、无机矿物成岩转化、矿物溶蚀和重结晶引起;热致裂主要由热应力和生烃增压造成。前期对不同成熟度页岩孔隙演化规律的研究以及对砂岩、花岗岩热破裂作用的研究,为进一步揭示页岩原位加热过程中的储层改质效应奠定了良好基础。但页岩中复杂的矿物成分导致其孔隙演化过程更加复杂,有机质裂解过程所伴随的成孔作用、酸性产物溶蚀作用以及增压效应使该过程进一步复杂化。在进一步研究中,需要对不同作用开展相对独立的研究,揭示其机理并建立预测模型,进而对原位加热过程中整个增孔增渗效应在时间和空间上的演化进行有效预测。
中图分类号:
1 | 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1): 14-26. |
Zou Caineng, Yang Zhi, Cui Jingwei, et al.Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration & Development, 2013, 40(1): 14-26. | |
2 | 邹才能,朱如凯,白斌,等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报,2015,34(1): 3-17. |
Zou Caineng, Zhu Rukai, Bai Bin. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2015, 34(1):3-17. | |
3 | 赵文智,胡素云,侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发,2018,45(4): 537-545. |
Zhao Wenzhi, Hu Suyun, Hou Lianhua. Connotation and strategic role of in⁃situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545. | |
4 | 柳波,吕延防,赵荣,等. 三塘湖盆地马朗凹陷芦草沟组泥页岩系统地层超压与页岩油富集机理[J]. 石油勘探与开发,2012, 39(6): 699-705. |
Liu Bo, Yanfang Lü, Zhao Rong, et al. Formation overpressure and shale oil enrichment in the shale system of Lucaogou Formation, Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration & Development, 2012, 39(6): 699-705. | |
5 | 蒋恕,唐相路, Osborne Steve,等. 页岩油气富集的主控因素及误辩:以美国、阿根廷和中国典型页岩为例[J]. 地球科学,2017, 42(7): 1083-1091. |
Jiang Shu, Tang Xianglu, Osborne Steve, et al. Enrichment factors and current misunderstanding of shale oil and gas: Case study of shales in U.S. Argentina and China[J]. Earth Science, 2017, 42(7): 1083-1091. | |
6 | Jarvie D M. Shale resource systems for oil and gas : part2⁃shale⁃oil resource systems[J]. AAPG Memoir, 2012:89-119. |
7 | 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12. |
Zou Caineng, Pan Songqi, Jing Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica,2020, 41(1): 1-12. | |
8 | Sohns H W, Mitchell L E, Cox R J, et al. Heat requirements for retorting oil shale[J]. Industrial & Engineering Chemistry,1951, 43(1): 33-36. |
9 | 吴敏杰,张静平,李忠城,等. 油页岩矿地面干馏目标区优选[J]. 新疆石油地质,2011, 32(6): 616-620. |
Wu Minjie, Zhang Jingping, Li Zhongcheng, et al. The optimizing method for on⁃ground retorting targets in oil shale mining areas[J]. Xinjiang Petroleum Geology, 2011, 32(6): 616-620. | |
10 | 钱家麟,尹亮. 油页岩: 石油的补充能源[M]. 北京:中国石化出版社, 2011. |
Qian Jialin, Yin Liang. Oil shale:petroleum alternative[M]. Beijing: China Petrochemical Press. 2011. | |
11 | 汪友平,王益维,孟祥龙,等. 美国油页岩原位开采技术与启示[J]. 石油钻采工艺, 2013,35(6): 55-59. |
Wang Youping, Wang Yiwei, Meng Xianglong, et al. Enlightenment of American′s oil shale in⁃situ retorting technology[J]. Oil Drilling & Production Technology, 2013,35(6): 55-59. | |
12 | 赵文智,胡素云,侯连华,等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发,2020,47(1): 1-10. |
Wenzhi ZhaoO, Hu Suyun, Hou Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020,47(1): 1-10. | |
13 | Alpak F O, Vink J C, Gao G, et al. Techniques for effective simulation, optimization, and uncertainty quantification of the in⁃situ upgrading process[J]. Journal of Unconventional Oil and Gas Resources. 2013, (3-4): 1-14. |
14 | 周科. 热氮气地下原位裂解油页岩温度场数值模拟及野外试验[D]. 吉林:吉林大学建设工程学院, 2017. |
Zhou Ke. Numerical simulation of temperature field and field test of in⁃situ pyrolysis of oil shale with hot nitrogen[D]. Jilin: College of Construction Engineering, Jilin University,2017. | |
15 | 杨阳. 高压—工频电加热原位裂解油页岩理论与试验研究[D].吉林:吉林大学建设工程学院, 2014. |
Yang Yang. Theoratical and experimental research of oil shale in⁃situ pyrolysis by high voltage⁃power frequency electaical heating method[D]. Jilin: College of Construction Engineering, Jilin University, 2014. | |
16 | 王玮. 传导与对流加热条件下油页岩孔隙结构演化及原位加热模拟分析[D]. 太原:太原理工大学矿业工程学院, 2015. |
Wang Wei. Proe structure evolution and in⁃situ heating simulation analysis of oil shale under conduction and convection heating conditions[D]. Taiyuan: College of Mining Engineering, Taiyuan University of Technology, 2015. | |
17 | 王磊. 过热蒸汽原位热解油页岩开采油气微观特征研究[D].太原:太原理工大学矿业工程学院, 2017. |
Wang Lei. Study on microscopic characteristics of in⁃situ pyrolysis oil shale and oil gas exploration through superheated steam[D]. Taiyuan: College of Mining Engineering, Taiyuan University of Te⁃chnology,2017. | |
18 | 赵林. 过热蒸汽对流加热油页岩原位开采基础实验研究[D].太原:太原理工大学矿业工程学院, 2015. |
Zhao Lin. Experimental study on in‑situ mining based overheat steam convection heating oil shale[D]. Taiyuan: College of Mining Engineering, Taiyuan University of Technology, 2015. | |
19 | 王益维,汪友平,孟祥龙,等. 低成熟度页岩油加热改质热解动力学及地层渗透性[J]. 石油与天然气地质, 2019,40(3): 678-684. |
Wang Yiwei, Wang Youping, Meng Xianglong, et al. Organic matter pyrolysis kinetics and formation permeability variation during upgrading process of low⁃maturity shale oil[J]. Oil & Gas Geology,2019,40(3): 678-684. | |
20 | 刘可禹,刘畅. “化学-沉积相”分析:一种研究细粒沉积岩的有效方法[J]. 石油与天然气地质, 2019, 40(3): 491-503. |
Liu Keyu, Liu Chang. “Chemo⁃sedimentary facies” analysis:An effective method to study fine⁃grained sedimentary rocks[J]. Oil & Gas Geology,2019, 40(3): 491-503. | |
21 | 卢双舫,薛海涛,王民,等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报,2016, 37(10): 1309-1322. |
Lu Shuangfang, Xue Haitao, Wang Min, et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica,2016, 37(10): 1309-1322. | |
22 | 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187. |
Zhou Caineng, Zhu Rukai, Wusongtao, et al. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations:taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica,2012, 33(2): 173-187. | |
23 | Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep⁃water shale⁃gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. |
24 | 刘树根,王世玉,孙玮,等. 四川盆地及其周缘五峰组—龙马溪组黑色页岩特征[J]. 成都理工大学学报: 自然科学版,2013, 40(6): 621-639. |
Liu Shugen, Wang Shiyu, Sun Wei, et al. Characteristics of black shale in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Chengdu University of Technology, 2013, 40(6): 621-639. | |
25 | 霍秋立,曾花森,付丽,等. 松辽盆地北部青一段泥页岩储集特征及孔隙演化[J]. 大庆石油地质与开发,2019, 38(1): 1-8. |
Huo Qiuli, Zeng Huasen, Fu Li, et al. Accumulating characteristics and pore evolution for Member Qing‑1 mud shale in North Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(1): 1-8. | |
26 | 邹才能, 朱如凯, 白斌,等. 中国油气储层中纳米孔喉首次发现及其科学价值[C]// 第四届中国石油地质年会.北京:2011:177. |
Zou Caineng, Zhu Rukai, Bai Bin, et al. First discovery of nano⁃pore throat in oil and gas reservoir in China and its scientific value[C]//The 4th Annual Conference of China Petroleum Geolog. Beijing: 2011:177. | |
27 | 张顺,刘惠民,王敏,等. 东营凹陷页岩油储层孔隙演化[J]. 石油学报, 2018, 39(7): 754-766. |
Zhang Shun, Liu Huimin, Wang Min, et al. Pore evolution of shale oil reservoirs in Dongying sag[J]. Acta Petrolei Sinica, 2018, 39(7): 754-766. | |
28 | 董春梅,马存飞,栾国强,等. 泥页岩热模拟实验及成岩演化模式[J]. 沉积学报, 2015, 33(5): 1053-1061. |
Dong Chunmei, Ma Cunfei, Luan Guoqiang, et al. Pyrolysis simu⁃lation experiment and diagenesis evolution pattern of shale[J]. Acta Sedimentologica Sinica, 2015, 33(5): 1053-1061. | |
29 | 肖七林,刘安,李楚雄,等. 高演化页岩纳米孔隙在过熟阶段的形成演化特征及主控因素——中扬子地区寒武系水井沱组页岩含水热模拟实验[J]. 地球科学, 2020,45(6):2160-2171. |
Xiao Qilin, Liu An, Li Chuxiong, et al. Formation and evolution of nanopores in highly matured shales at over‑mature stage: insights from the hydrous pyrolysis experiments on cambrain shuijintuo shale from the middle yangtze region[J]. Earth Science, 2020,45(6):2160-2171. | |
30 | 王洪纲. 热弹性力学概论[M].北京:清华大学出版社, 1989: 446. |
Wang Honggang. Introduction to thermoelasticity[M]. Beijing: Tsinghua University Press. 1988: 446. | |
31 | 康健. 岩石热破裂的研究及应用[M].大连: 大连理工大学出版社, 2008. |
Kang Jian. Research on thermal cracking of rocks and its application[M]. Dalian: Dalian University of Technology Press, 2008. | |
32 | 徐小荷,余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984. |
Xu Xiaohe, Yu Jing. Rock fragmentation[M]. Beijing: China Coal Industry Publishing House,1984. | |
33 | 游利军,康毅力. 热处理对致密岩石物理性质的影响[J]. 地球物理学进展, 2009, 24(5): 1850-1854. |
You Lijun, Kang Yili. Effects of thermal treatment on physical property of tight rocks[J]. Progress in Geophysics, 2009, 24(5): 1850-1854. | |
34 | Braun R L, Burnham A K. Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models[J]. Energy & Fuels, 1987, 1(2): 153-161. |
35 | Tissot B P, Pelet R, Ungerer P H. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation[J]. AAPG Bulletin, 1987, 71(12): 1445-1466. |
36 | 卢双舫,付晓泰,刘晓艳,等. 油成气的动力学模型及其标定[J]. 天然气工业, 1996,(6): 6-8. |
Lu Shuangfang, Fu Xiaotai, Liu Xiaoyan, et al. Dynamics model of oil to gas and its calibration[J]. Natural Gas Industry, 1996,(6): 6-8. | |
37 | Sadiki A, Kaminsky W, Halim H, et al. Fluidised bed pyrolysis of Moroccan oil shales using the hamburg pyrolysis process[J]. Journal of Analytical and Applied Pyrolysis, 2003, 70(2): 427- |
435 | |
38 | Wang W, Ma Y, Li S, et al. Effect of temperature on the EPR properties of oil shale pyrolysates[J]. Energy & Fuels, 2016, 30(2): 830-834. |
39 | Huang Y, Han X, Jiang X. A tga⁃ms investigation of the effect of heating rate and mineral matrix on the pyrolysis of kerogen in oil shale.[J]. Oil Shale, 2016, 33(2):125-141. |
40 | Maaten B, Loo L, Konist A, et al. Decomposition kinetics of american, chinese and estonian oil shales kerogen[J]. Oil shale, 2016, 33(2): 167. |
41 | Wang Q, Wang H, Sun B, et al. Thermo⁃gravimetric study and kinetic analysis of blended combustion characteristics of oil shale and semi⁃coke[J]. Journal of Chemical Industry & Engineering, 2007, 58(11): 2882-2888. |
42 | Wang Z, Liu X, Wang Y, et al. Studies on the co⁃pyrolysis cha⁃racteristics of oil shale and spent oil shale[J]. Journal of Thermal Analysis & Calorimetry, 2016, 123(2): 1707-1714. |
43 | Wang Q, Wang Y, Zhang H, et al. The simulation study of application of the fg⁃dvc model to the pyrolysis of huadian oil shale of china at different heating rates[J]. Oil Shale, 2016, 33(2): 111. |
44 | 薛莲花,杨巍,仲佳爱,等. 富有机质页岩生烃阶段孔隙演化——来自鄂尔多斯延长组地质条件约束下的热模拟实验证据[J]. 地质学报, 2015, 89(5): 970-978. |
Xue Lianhua, Yang Wei, Zhong Jia'ai, et al. Porous evolution of the organic⁃rich shale from simulated experiment with geological constrains,samples from yanchang formation in ordos basin[J]. Acta Geologica Sinica, 2015, 89(5): 970-978. | |
45 | 胡海燕. 富有机质Woodford页岩孔隙演化的热模拟实验[J]. 石油学报, 2013, 34(5): 820-825. |
Hu Haiyan. Porosity evolution of the organic⁃rich shale with thermal maturity increasing[J]. Acta Petrolei Sinica, 2013, 34(5): 820-825. | |
46 | 吴松涛,朱如凯,崔京钢,等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176. |
Wu Songtao, Zhu Rukai, Cui Jinggang, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 167-176. | |
47 | Chen J, Xiao X. Evolution of nanoporosity in organic⁃rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181. |
48 | 李楚雄,肖七林,陈奇,等. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素[J]. 石油实验地质, 2019, 41(6): 901-909. |
Li Chuxiong, Xiao Qilin, Chen Qi, et al. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. Petroleum Geology and Experiment, 2019, 41(6): 901-909. | |
49 | Sun L, Tuo J, Zhang M, et al. Formation and development of the pore structure in Chang 7 member oil⁃shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis[J]. Fuel, 2015, 158: 549-557. |
50 | 刘志军,杨栋,胡耀青,等. 油页岩原位热解孔隙结构演化的低温氮吸附分析[J]. 西安科技大学学报, 2018, 38(5): 737-742. |
Liu Zhijun, Yang Dong, Hu Yaoqing, et al. Low temperature nitrogen adsorption analysis of pore structure evolution in in⁃situ pyrolysis of oil shale[J]. Journal of Xi'an University of Science and Technology, 2018, 38(5): 737-742. | |
51 | Liu Z, Yang D, Hu Y, et al. Influence of in situ pyrolysis on the evolution of pore structure of oil shale[J]. Energies, 2018, 11(4): 755. |
52 | 王飞宇,关晶,冯伟平,等. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发, 2013, 40(6): 764-768. |
Wang Feiyu, Guan Jing, Feng Weiping, et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6): 764-768. | |
53 | 吉利明,吴远东,贺聪,等. 富有机质泥页岩高压生烃模拟与孔隙演化特征[J]. 石油学报, 2016, 37(2): 172-181. |
Ji Liming, Wu Yuandong, He Cong, et al. High⁃pressure hydrocarbon⁃generation simulation and pore evolution characteristics of organic⁃rich mudstone and shale[J]. Acta Petrolei Sinica, 2016, 37(2): 172-181. | |
54 | 崔景伟,朱如凯,崔京钢. 页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据[J]. 地质学报, 2013, 87(5): 730-736. |
Cui Jingwei, Zhu Rukai, Cui Jinggang. Relationship of porous evolution and residual hydrocarbon: evidence from modeling experiment with geological constrains[J]. Acta Geologica Sinica, 2013, 87(5): 730-736. | |
55 | Guo H, Jia W, Zeng J, et al. Evolution of organic matter and nanometer⁃scale pores in an artificially matured shale undergoing two distinct types of pyrolysis: A study of the Yanchang Shale with Type II kerogen[J]. Organic Geochemistry, 2017, 105: 56-66. |
56 | Hu H, Zhang T, Wiggins⁃Camacho J D, et al. Experimental investigation of changes in methane adsorption of bitumen⁃free Woodford Shale with thermal maturation induced by hydrous pyrolysis[J]. Marine and Petroleum Geology, 2015, 59: 114-128. |
57 | Yu K, Ju Y, Shao C. Structure characteristics and evolution mechanism of nanopore in transitional coal⁃bearing shale[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106545. |
58 | 刘志军. 温度作用下油页岩孔隙结构及渗透特征演化规律研究[D]. 太原:太原理工大学, 2018. |
Liu Zhijun. Temperature dependence of evolution of pore structure and permeability characteristics of oil shale[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
59 | 赵林,杨栋,康志勤,等. 过热蒸汽对流加热油页岩产气规律研究[J]. 太原理工大学学报, 2015,46(3): 323-326. |
Zhao Lin, Yang Dong, Kang Zhiqin, et al. Gas generation law of oil shale heated by superheated steam[J]. Journal of Taiyuan University of Technology, 2015,46(3): 323-326. | |
60 | Hao F, Zou H, Gong Z, et al. Hierarchies of overpressure retardation of organic matter maturation: Case studies from petroleum basins in China[J]. AAPG Bulletin, 2007, 91(10): 1467-1498. |
61 | 郭小文,何生,郑伦举,等. 生油增压定量模型及影响因素[J]. 石油学报, 2011, 32(4): 637-644. |
Guo Xiaowen, He Sheng, Zheng Lunju, et al. A quantitative model for the overpressure caused by oil generation and its influential factors[J]. Acta Petrolei Sinica, 2011, 32(4): 637-644. | |
62 | 陈颙,吴晓东,张福勤. 岩石热开裂的实验研究[J]. 科学通报, 1999(8): 880-883. |
Chen Yu, Wu Xiaodong, Zhang Fuqin. Experimental study on thermal cracking of rock[J]. Chinese Science Bulletin, 1999(8): 880-883. | |
63 | 唐春安,徐小荷. 岩石破裂过程中的灾变问题[M]. 成都:煤炭工业出版社, 1989:5. |
Tang Chun’an, Xu Xiaohe. Catastrophes in rock failure[M]. Chengdu: Coal Industry Press 1989:5. | |
64 | 李纪汉,刘晓红,郝晋昇. 温度对岩石的弹性波速和声发射的影响[J]. 地震学报, 1986, 8(3): 293-300. |
Li Jihan, Liu Xiaohong, Hao Jinsheng. Influence of temperature on elastic wave velocity and acoustic emission of rock[J]. Acta Seismologica Sinica, 1986, 8(3): 293-300. | |
65 | 赵阳升,万志军,张渊,等. 岩石热破裂与渗透性相关规律的试验研究[J]. 岩石力学与工程学报, 2010, 29(10): 1970-1976. |
Zhao Yangsheng, Wan Zhijun, Zhang Yuan, et al. Experimental study of related laws of rock thermal cracking and permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 1970-1976. | |
66 | 耿毅德. 油页岩地下原位压裂—热解物理力学特性试验研究[D]. 太原:太原理工大学矿业工程学院, 2018. |
Geng Yide. Experimental study on the physical and mechanical properties of oil shale during in⁃situ fracturing and pyrolysis[D]. Taiyuan: College of Mining Engineering, Taiyuan University of Technology, 2018. | |
67 | Saif T, Lin Q, Gao Y, et al. 4D in situ synchrotron X⁃ray tomographic microscopy and laser⁃based heating study of oil shale pyrolysis[J]. Applied Energy, 2019, 235: 1468-1475. |
68 | 赵阳升,孟巧荣,康天合,等. 显微CT试验技术与花岗岩热破裂特征的细观研究[J]. 岩石力学与工程学报, 2008(1): 28-34. |
Zhao Yangsheng, Meng Qiaorong, Kang Tianhe, et al. micro⁃ct experimental technology and meso⁃investigation on thermal fracturing characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(1): 28-34. | |
69 | 康志勤,赵阳升,孟巧荣,等. 油页岩热破裂规律显微CT实验研究[J]. 地球物理学报, 2009, 52(3): 842-848. |
Kang Zhiqin, Zhao Yangsheng, Meng Qiaorong, et al. Micro⁃CT experimental research of oil shale thermal cracking laws[J]. Chinese Journal of Geophysics, 2009, 52(3): 842-848. | |
70 | 孟巧荣,康志勤,赵阳升,等. 油页岩热破裂及起裂机制试验[J]. 中国石油大学学报(自然科学版), 2010, 34(4): 89-92. |
Meng Qiaorong, Kang Zhiqin, Zhao Yangsheng, et al. Experiment of thermal cracking and crack initiation mechanism of oil shale[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2010, 34(4): 89-92. | |
71 | 杨栋,康志勤,赵静,等. 油页岩高温CT实验研究[J]. 太原理工大学学报, 2011, 42(3): 255-257. |
Yang Dong, Kang Zhiqin, Zhao Jing, et al. CT experiment research of oil shale under high temperature[J]. Journal of Taiyuan University of Technology, 2011, 42(3): 255-257. | |
72 | 赵静,冯增朝,杨栋,等. 基于三维 CT 图像的油页岩热解及内部结构变化特征分析[J]. 岩石力学与工程学报, 2014, 33(1): 112-117. |
Zhao Jing, Feng Zengchao, Yang Dong, et al. Study of pyrolysis and internal structural variation of oil shale based on 3d ct images[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 112-117. | |
73 | Kobchenko M, Panahi H, Renard F, et al. 4D imaging of fractu⁃ring in organic‐rich shales during heating[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B12201):1-9. |
74 | Cundall P A, Strack O D. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. |
75 | Cundall P A, Hart R D. Numerical modelling of discontinua[J]. Analysis & Design Methods, 1993, 9(2):231-243. |
76 | 周喻,吴顺川,许学良,等. 岩石破裂过程中声发射特性的颗粒流分析[J]. 岩石力学与工程学报, 2013, 32(5): 951-959. |
Zhou Yu, Wu Shunchuan, Xu Xueliang, et al. Particle flow analysis of acoustic emission characteristics during rock failure process[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 951-959. | |
77 | 徐寅善. 级配碎石剪切强度数值试验方法及其应用[D]. 西安:长安大学公路学院, 2012. |
Xu Yinshan. Shear strength silumation test method of graded broken stone and its appliance[D].Xi'an: College of Highway, Chang'an University, 2012. | |
78 | 尹小涛. 岩土材料工程性质数值试验研究[D]. 武汉:中国科学院研究生院,2008. |
Yin Xiaotao. Study on the engineering characteristics of rock and soil material based on numerical test[D]. Wuhan: Chinese Aca⁃demy of Sciences, 2008. | |
79 | Zhou Z, Jiang Y, Zou Y, et al. Degradation mechanism of rock under impact loadings by integrated investigation on crack and damage development[J]. Journal of Central South University, 2014, 21(12): 4646-4652. |
80 | 陈长冰. 筒仓内散体侧压力沿仓壁分布研究[D]. 合肥:合肥工业大学, 2006. |
Chen Changbing. Research on distribution of lateral bulk⁃solid pressures on silos’ walls.[D]. Hefei: Hefei University of Technology, 2006. | |
81 | Han S M, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories[J]. Journal of Sound & Vibration, 1999, 225(5): 935-988. |
82 | Dougill J W, Lau J C, Burt N J. Towards a theoretical model for progressive failure and softening in rock, concrete and similar materials[C]//Proceedings of the ASCE‑EMD Specialty Conference on Mechanics in Engineering. Canada: ASCE‑EMD, 1976: 335- |
355 | |
83 | 付文生,李长春,袁建新. 温度对岩石损伤影响的研究[J]. 华中理工大学学报, 1993(3): 109-113. |
Fu Wensheng, Li Changchun, Yuan Jianxin. Study on the effect of temperature on rock damage[J]. Journal of Huazhong University of Science and Technology, 1993(3): 109-113. | |
84 | 刘泉声,许锡昌. 温度作用下脆性岩石的损伤分析[J]. 岩石力学与工程学报, 2000,19(4): 408-411. |
Liu Quansheng, Xu Xichang. Damage analysis of brittle rock at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2000,19(4): 408-411. | |
85 | 许锡昌,刘泉声. 高温下花岗岩基本力学性质初步研究[J]. 岩土工程学报, 2000,19(3): 332-335. |
Xu Xichang, Liu Quansheng. A preliminary study on basic mechanical properties for granite at high temperature[J]. Chinese Journal of Geotechnical Engineering, 2000,19(3): 332-335. | |
86 | 邓广哲,王广地. 北山花岗岩热粘弹性流变特性分析[J]. 岩石力学与工程学报, 2004,23(S1): 4368-4372. |
Deng Guangzhe, Wang Guangdi. Analysis on characteristics of thermo⁃viscoelasto rheology of beishan granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2004,23(S1): 4368-4372. | |
87 | 谢卫红,高峰,李顺才,等. 石灰岩热损伤破坏机制研究[J]. 岩土力学, 2007(5): 1021-1025. |
Xie Weihong, Gao Feng, Li Shuncai, et al. Study on mechanism of thermal damage fracture for limestone[J]. Rock and Soil Mechanics, 2007(5): 1021-1025. | |
88 | 谢卫红,李顺才,高峰. 岩石热损伤-力耦合能量破坏准则研究[J]. 西安科技大学学报, 2007(3): 341-346. |
Xie Weihong, Li Shuncai, Gao Feng. Energy fracture criterion of thermal damage⁃mechanical coupling[J]. Journal of Xi'an University of Science and Technology, 2007(3): 341-346. | |
89 | 谢卫红,高峰,李顺才. 加载历史对岩石热开裂破坏的影响[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(4): 593-596. |
Xie Weihong, Gao Feng, Li Shuncai. Impact on rock’s thermal cracking by loading history[J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(4): 593-596. | |
90 | 尹土兵. 考虑温度效应的岩石动力学行为研究[D]. 长沙:中南大学, 2012. |
Yin Tubin. Study on dynamic behavior of rocks concidering thermal effect[D]. Changsha: Central South University, 2012. | |
91 | 张连英. 高温作用下泥岩的损伤演化及破裂机理研究[D]. 徐州:中国矿业大学, 2012. |
Zhang Lianying. Research on damage evoultion and fracture mechanisms of mudstone under high tempearture[D]. Xuzhou: China University of Mining and Technology, 2012. | |
92 | 于庆磊,郑超,杨天鸿,等. 基于细观结构表征的岩石破裂热-力耦合模型及应用[J]. 岩石力学与工程学报, 2012, 31(1): 42-51. |
Yu Qinglei, Zheng Chao, Yang Tianhong, et al. Meso⁃structure characterization based on coupled thermal⁃mechanical model for rock failure process and applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 42-51. | |
93 | 唐世斌,唐春安,朱万成,等. 热应力作用下的岩石破裂过程分析[J]. 岩石力学与工程学报, 2006,25(10): 2071-2078. |
Tang Shibin, Tang Chun’an, Zhu Wancheng, et al. numerical investigation on rock failure process induced by thermal stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25(10): 2071-2078. | |
94 | Shao S, Ranjith P G, Wasantha P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy[J]. Geothermics, 2015, 54: 96-108. |
95 | Jaeger J C, Cook N. Fundamentals of rock mechanics[J]. Scie⁃nce Paperbacks, 1979, 9(3): 251-252(2). |
96 | Gudehus G. Finite Elements in Geomechanics[J]. Soil Science, 1978, 125(6): 394. |
97 | 泽仑,黄昀. 非晶态固体物理学[M]. 北京: 北京大学出版社,1988, 19(8): 8. |
Lun Ze, Huang Yun. Amorphous solid state physics[M]. Beijing: Peking University Press,1988, 19(8): 8. | |
98 | 杨瑞成,羊海棠,彭采宇,等. 逾渗理论及聚合物脆韧转变逾渗模型[J]. 兰州理工大学学报, 2005, 31(1): 26-30. |
Yang Ruicheng, Yang Haitang, Peng Caiyu, et al. Percolation theory and percolation model of brittle‑ductile transition of polymers[J]. Journal of Lanzhou University of Technology, 2005, 31(1): 26-30. | |
99 | 李小刚,朱静怡,杨兆中,等.低渗透稠油微波原位加热开采数值模拟研究[J]. 特种油气藏, 2020, 27(6): 120-126. |
Li Xiaogang, Zhu Jingyi, Yang Zhaozhong,et al.Numerical simulation research on microwave in‑situ heating technology for developing heavy oil in low‑permeability reservoirs[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 120-126. | |
100 | 刘诗琦,陈森然,刘波,等.基于原位溶蚀模拟实验的四川盆地二叠系栖霞组-茅口组白云岩孔隙演化[J]. 石油与天然气地质, 2021, 42(3): 702-716. |
Liu Shiqi, Chen Senran, Liu Bo,et al. Pore evolution of the Permian Qixia‑Maokou Formations dolomite in Sichuan Basin based on in‑situ dissolution simulation experiment[J]. Oil & Gas Geology, 2021, 42(3): 702-716. | |
101 | 曹小朋.矿物组成对页岩油渗流机理的影响[J]. 断块油气田, 2021, 28(5): 609-613. |
Cao Xiaopeng. Influence of mineral composition on shale oil seepage mechanism[J]. Fault‑Block Oil and Gas Field, 2021, 28(5):609-613. | |
102 | 刘凡,吴学林,周文胜,等. 考虑聚合物非牛顿性和渗流附加阻力的海上油田早期注聚效果评价方法[J].石油地质与工程,2020, 34(5): 83-88. |
Liu Fan et al. Evaluation method of early polymer injection effect in offshore oilfields considering non‑Newtonian behavior of polymer and additional seepage resistance[J]. Petroleum Geology & Engineering, 2020, 34(5): 83-88. | |
103 | 柳波, 刘阳, 刘岩,等.低熟页岩电加热原位改质油气资源潜力数值模拟——以松辽盆地南部中央坳陷区嫩江组一、二段为例[J].石油实验地质, 2020, 42(4): 533-544. |
Liu Bo, Liu Yang, Liu Yan,et al.Prediction of low‑maturity shale oil produced by in situ conversion: a case study of the first and se⁃cond members of Nenjiang Formation in the Central Depression, southern Songliao Basin, Northeast China[J].Petroleum Geology & Experiment, 2020, 42(4): 533-544. | |
104 | 王伟,李阳,陈祖华,等. 基于复杂渗流机理的页岩气藏压后数值模拟研究[J]. 油气藏评价与开发, 2020, 10(1): 22-29. |
Wang Wei, Li Yang, Chen Zuhua,et al. Post‑fracturing numerical simulation of shale gas reservoir based on complex flow mechanisms[J]. Reservoir Evaluation and Development, 2020, 10(1): 22-29. |
[1] | 孙焕泉, 杨勇, 方吉超, 凡哲元, 吴光焕, 元福卿, 杨元亮, 吴永超. 提高油气田采收率技术协同方法与应用[J]. 石油与天然气地质, 2024, 45(3): 600-608. |
[2] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[3] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[4] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[5] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[6] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[7] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[8] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[9] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[10] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
[11] | 米立军, 徐建永, 李威. 渤海海域页岩油资源潜力[J]. 石油与天然气地质, 2023, 44(6): 1366-1377. |
[12] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[13] | 刘惠民, 李政, 包友书, 张守春, 王伟庆, 吴连波, 王勇, 朱日房, 方正伟, 张顺, 刘鹏, 王敏. 渤海湾盆地济阳坳陷高产页岩油井BYP5页岩地质特征[J]. 石油与天然气地质, 2023, 44(6): 1405-1417. |
[14] | 王民, 余昌琦, 费俊胜, 李进步, 张宇辰, 言语, 吴艳, 董尚德, 唐育龙. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452. |
[15] | 李志明, 刘雅慧, 何晋译, 孙中良, 冷筠滢, 李楚雄, 贾梦瑶, 徐二社, 刘鹏, 黎茂稳, 曹婷婷, 钱门辉, 朱峰. 陆相页岩油“甜点”段评价关键参数界限探讨[J]. 石油与天然气地质, 2023, 44(6): 1453-1467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||