石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (2): 456-466.doi: 10.11743/ogg20220217
李纯泉1,2(), 陈红汉1,2, 肖雪薇1,2, 汪泽成3, 姜华3
收稿日期:
2020-08-07
修回日期:
2022-01-20
出版日期:
2022-04-01
发布日期:
2022-03-11
第一作者简介:
李纯泉(1974—),男,博士、副教授,油气成藏和流体包裹体系统分析。E?mail: 基金项目:
Chunquan Li1,2(), Honghan Chen1,2, Xuewei Xiao1,2, Zecheng Wang3, Hua Jiang3
Received:
2020-08-07
Revised:
2022-01-20
Online:
2022-04-01
Published:
2022-03-11
摘要:
拉曼光谱分析是刻画有机质成熟度的一种有效技术方法。通过对四川盆地中部高石梯-磨溪地区21块震旦系灯影组储层样品中的沥青开展系统的拉曼光谱分析,并用经验公式获取沥青的等效镜质体反射率,表征了沥青所处的成熟阶段,进而探讨了储层经历的热演化及改造作用。结果表明,高石梯-磨溪地区震旦系灯影组储层溶蚀孔洞及裂缝充填沥青绝大多数都处于高-过成熟阶段,占比达81.1 %;沥青拉曼光谱参数在等效镜质体反射率3.0 %处存在明显的转折点,构成两段式变化趋势特征。沥青等效镜质体反射率偏离正常演化趋势的异常高值,记录了储层经历的热异常,是明显的高温热流体活动响应,其空间上的分布特征反映了热流体活动的多期性,表明储层经历了多期热液蚀变改造,佐证了原油裂解成气而构成现今全是气藏分布的格局。
中图分类号:
表1
高石梯-磨溪地区震旦系灯影组储层沥青激光拉曼分析样品清单"
井号 | 样品编号 | 深度/m | 岩性及胶结物充填序次 |
---|---|---|---|
高石102 | 1 | 5 039.62 | 砂屑白云岩,发育裂缝并充填白云石—Bit.2—闪锌矿/石英 |
2 | 5 051.80 | 泥晶凝块石白云岩,溶蚀孔洞并充填白云石—Bit.2—石英 | |
3 | 5 059.50 | 白云岩,发育白云石脉,溶蚀孔充填白云石—Bit.2 | |
4 | 5 063.60 | 砂屑白云岩,溶洞充填白云石—石英—Bit.2/闪锌矿 | |
5 | 5 065.50 | 砂屑白云岩,溶洞充填白云石—Bit.2—石英 | |
6 | 5 075.25 | 砂屑白云岩,溶洞充填白云石—Bit.2/石英 | |
7 | 5 087.24 | 白云岩,溶洞充填白云石—Bit.2—石英 | |
8 | 5 088.53 | 白云岩,溶洞充填白云石—Bit.2—石英 | |
9 | 5 092.73 | 白云岩,溶洞充填白云石—Bit.2—石英 | |
10 | 5 097.40 | 白云岩,溶洞充填白云石—Bit.2—石英 | |
11 | 5 110.35 | 粉屑白云岩,溶洞充填粗晶白云石—Bit.2/石英 | |
12 | 5 125.33 | 泥晶凝块石白云岩,溶洞充填白云石—Bit.2—石英 | |
13 | 5 137.09 | 白云岩,发育裂缝并充填Bit.1—白云石—Bit.2 | |
14 | 5 145.80 | 粉屑白云岩,溶洞充填白云石—Bit.2/石英 | |
15 | 5 174.21 | 白云岩,溶洞充填白云石—Bit.2—石英 | |
16 | 5 176.65 | 白云岩,发育裂缝并充填白云石—Bit.1—白云石—Bit.2 | |
磨溪13 | 17 | 5 104.72 | 白云岩,溶蚀孔洞充填白云石—Bit.2—石英 |
磨溪39 | 18 | 5 255.68 | 纹层状白云岩,局部角砾化,溶洞充填白云石—Bit.2 |
磨溪51 | 19 | 5 370.02 | 白云岩,溶蚀孔洞充填白云石—Bit.2—石英 |
磨溪105 | 20 | 5 357.91 | 泥晶白云岩,溶蚀孔洞发育,且充填沥青—白云石 |
磨溪109 | 21 | 5 128.45 | 粒屑白云岩,溶蚀孔洞充填白云石+沥青+石英 |
图2
高石梯-磨溪地区震旦系灯四段储层沥青特征a,b.高石102井,埋深5 176.65 m,白云岩,裂缝发育,充填白云石—沥青—白云石—沥青,a为岩心,b为a中黄色范围薄片; c,d.磨溪105井,埋深5 357.91 m,泥晶白云岩,溶蚀孔洞缝发育,充填沥青—白云石—沥青,c为岩心,d为c中黄色范围薄片; e—g.b中黄色范围显微照相,e为透射光照片,f为荧光照片,g为反射光照片; h—j.d中黄色范围显微照相,h为透射光照片,i为荧光照片,j为反射光照片; k,l.高石102井,埋深5 051.80 m,泥晶凝块石白云岩,溶洞充填鞍型白云石、沥青和石英,k为透射光照片,l为反射光照片; m,n.磨溪109井,埋深5 128.45 m,粒屑白云岩,溶洞充填白云石和沥青,m为透射光照片,n为反射光照片Bit.1.早期沥青; Bit.2.晚期沥青; Dol.白云石; S-Dol.鞍型白云石; Qtz.石英"
表2
高石梯-磨溪地区震旦系灯影组储层沥青拉曼光谱参数及等效镜质体定量化结果"
井号 | 深度/m | 样品编号 | 测点 | WD/cm-1 | ID | WG/cm-1 | IG | WS/cm-1 | IS | R1 | RBS/cm-1 | FWHMG/cm-1 | FWHMD/cm-1 | SSA | SI | eqRo*/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
高石102 | 5 039.62 | 1 | a | 1 331.28 | 1 410.32 | 1 598.73 | 1 997.50 | 1 467.11 | 664.20 | 0.71 | 267 | 84 | 192 | 459 366 | 3.01 | 0.64 |
b | 1 329.31 | 1 434.90 | 1 599.17 | 1 984.24 | 1 461.47 | 662.66 | 0.72 | 270 | 77 | 198 | 460 455 | 2.99 | 0.97 | |||
5 051.80 | 2 | a | 1 334.15 | 1 394.42 | 1 600.65 | 1 945.45 | 1 474.27 | 608.21 | 0.72 | 267 | 78 | 179 | 441 800 | 3.20 | 0.91 | |
b | 1 327.92 | 1 412.01 | 1 598.64 | 1 995.95 | 1 466.88 | 636.99 | 0.71 | 271 | 82 | 190 | 468 313 | 3.13 | 0.72 | |||
5 059.50 | 3 | a | 1 327.70 | 1 348.64 | 1 600.20 | 1 973.39 | 1 468.54 | 522.77 | 0.68 | 273 | 68 | 165 | 416 776 | 3.77 | 1.63 | |
b | 1 326.04 | 1 304.04 | 1 601.14 | 1 980.46 | 1 468.54 | 438.11 | 0.66 | 275 | 58 | 154 | 384 374 | 4.52 | 2.92 | |||
c | 1 327.21 | 1 282.48 | 1 600.25 | 1 971.71 | 1 465.41 | 414.10 | 0.65 | 273 | 60 | 151 | 375 091 | 4.76 | 2.60 | |||
5 063.60 | 4 | a | 1 327.97 | 1 327.67 | 1 599.44 | 1 977.60 | 1 476.15 | 529.46 | 0.67 | 271 | 70 | 171 | 420 001 | 3.74 | 1.45 | |
b | 1 329.35 | 1 359.39 | 1 599.80 | 1 969.28 | 1 455.47 | 516.45 | 0.69 | 270 | 69 | 163 | 420 226 | 3.81 | 1.54 | |||
5 065.50 | 5 | a | 1 327.07 | 1 419.55 | 1 599.62 | 1 996.30 | 1 461.69 | 567.45 | 0.71 | 273 | 72 | 172 | 441 092 | 3.52 | 1.29 | |
b | 1 325.77 | 1 322.52 | 1 600.16 | 1 973.88 | 1 464.51 | 418.27 | 0.67 | 274 | 59 | 155 | 382 448 | 4.72 | 2.76 | |||
5 075.25 | 6 | a | 1 326.49 | 1 316.19 | 1 602.44 | 1 977.54 | 1 468.58 | 392.45 | 0.67 | 276 | 56 | 146 | 369 621 | 5.04 | 3.29 | |
5 087.24 | 7 | a | 1 325.10 | 1 281.46 | 1 600.52 | 1 987.62 | 1 462.14 | 400.71 | 0.64 | 275 | 58 | 148 | 371 856 | 4.96 | 2.92 | |
5 088.53 | 8 | a | 1 331.24 | 1 338.45 | 1 599.04 | 1 914.29 | 1 471.27 | 599.65 | 0.70 | 268 | 79 | 189 | 428 597 | 3.19 | 0.86 | |
b | 1 328.15 | 1 352.19 | 1 598.77 | 1 953.33 | 1 473.42 | 520.29 | 0.69 | 271 | 70 | 168 | 418 060 | 3.75 | 1.45 | |||
5 092.73 | 9 | a | 1 326.62 | 1 390.89 | 1 599.08 | 1 977.06 | 1 467.06 | 552.87 | 0.70 | 272 | 72 | 174 | 436 154 | 3.58 | 1.29 | |
b | 1 326.31 | 1 362.09 | 1 598.68 | 1 956.90 | 1 457.93 | 548.66 | 0.70 | 272 | 69 | 171 | 427 056 | 3.57 | 1.54 | |||
c | 1 327.43 | 1 344.19 | 1 599.85 | 1 986.28 | 1 465.59 | 486.88 | 0.68 | 272 | 63 | 158 | 403 369 | 4.08 | 2.19 | |||
5 097.40 | 10 | a | 1 325.82 | 1 319.27 | 1 600.83 | 1 983.63 | 1 468.27 | 406.79 | 0.67 | 275 | 58 | 151 | 379 254 | 4.88 | 2.92 | |
b | 1 325.55 | 1 292.17 | 1 601.86 | 1 992.08 | 1 465.45 | 365.04 | 0.65 | 276 | 55 | 140 | 359 656 | 5.46 | 3.48 | |||
5 110.35 | 11 | a | 1 350.17 | 1 403.62 | 1 607.30 | 1 975.17 | 1 472.52 | 751.52 | 0.71 | 257 | 94 | — | 489 998 | 2.63 | 0.36 | |
5 125.33 | 12 | a | 1 332.30 | 1 432.78 | 1 603.20 | 1 953.29 | 1 477.72 | 746.95 | 0.73 | 271 | 90 | — | 487 656 | 2.62 | 0.45 | |
b | 1 327.21 | 1 354.19 | 1 600.65 | 1 984.33 | 1 465.18 | 482.75 | 0.68 | 273 | 65 | 157 | 411 114 | 4.11 | 1.94 | |||
5 137.09 | 13 | a | 1 328.15 | 1 316.40 | 1 604.19 | 1 988.30 | 1 469.93 | 470.16 | 0.66 | 276 | 62 | 156 | 388 649 | 4.23 | 2.32 | |
b | 1 328.41 | 1 202.51 | 1 604.23 | 1 968.04 | 1 463.75 | 333.40 | 0.61 | 276 | 52 | 134 | 333 227 | 5.90 | 4.15 | |||
5 145.80 | 14 | a | 1 328.10 | 1 267.07 | 1 604.01 | 1 985.42 | 1 458.29 | 361.07 | 0.64 | 276 | 54 | 136 | 350 987 | 5.50 | 3.69 | |
b | 1 327.65 | 1 330.60 | 1 602.98 | 1 972.44 | 1 474.05 | 448.14 | 0.67 | 275 | 58 | 150 | 378 384 | 4.40 | 2.92 | |||
5 174.21 | 15 | a | 1 328.86 | 1 309.49 | 1 603.52 | 1 967.82 | 1 471.09 | 375.91 | 0.67 | 275 | 55 | 138 | 356 765 | 5.23 | 3.48 | |
5 176.65 | 16 | a | 1 329.67 | 1 256.90 | 1 605.08 | 1 965.35 | 1 471.18 | 360.24 | 0.64 | 275 | 53 | 135 | 345 006 | 5.46 | 3.91 | |
b | 1 328.55 | 1 270.24 | 1 606.02 | 1 988.50 | 1 474.14 | 362.58 | 0.64 | 277 | 52 | 133 | 348 197 | 5.48 | 4.15 | |||
磨溪13 | 5 104.72 | 17 | a | 1 330.07 | 1 267.12 | 1 603.47 | 1 988.80 | 1 466.88 | 460.86 | 0.64 | 273 | 61 | 164 | 388 530 | 4.32 | 2.46 |
b | 1 332.09 | 1 266.32 | 1 605.67 | 1 973.83 | 1 484.12 | 352.28 | 0.64 | 274 | 51 | 142 | 330 855 | 5.60 | 4.40 | |||
磨溪39 | 5 255.68 | 18 | a | 1 327.03 | 1 411.12 | 1 604.19 | 1 978.30 | 1 469.66 | 377.90 | 0.71 | 277 | 55 | 125 | 359 500 | 5.24 | 3.48 |
b | 1 328.50 | 1 385.82 | 1 606.52 | 1 978.17 | 1 466.26 | 331.72 | 0.70 | 278 | 51 | 119 | 335 458 | 5.96 | 4.40 | |||
磨溪51 | 5 370.02 | 19 | a | 1 329.18 | 1 278.46 | 1 605.53 | 1 977.26 | 1 471.41 | 341.23 | 0.65 | 276 | 49 | 129 | 341 570 | 5.79 | 4.94 |
磨溪105 | 5 357.91 | 20 | a | 1 329.13 | 1 287.03 | 1 604.37 | 1 985.71 | 1 479.60 | 403.14 | 0.65 | 275 | 56 | 152 | 370 577 | 4.93 | 3.29 |
b | 1 330.79 | 1 199.91 | 1 605.67 | 1 974.00 | 1 487.30 | 377.73 | 0.61 | 275 | 54 | 149 | 350 552 | 5.23 | 3.69 | |||
磨溪109 | 5 128.45 | 21 | a | 1 331.77 | 1 232.04 | 1 607.19 | 1 961.23 | 1 485.51 | 375.56 | 0.63 | 275 | 50 | 151 | 350 489 | 5.22 | 4.66 |
b | 1 330.30 | 1 201.04 | 1 603.74 | 1 985.72 | 1 475.34 | 370.23 | 0.60 | 273 | 57 | 148 | 351 417 | 5.36 | 3.10 |
1 | 刘丹,李剑,谢增业,等. 川中震旦系灯影组原生-同层沥青的成因及意义[J].石油实验地质,2014,36(2):218-223. |
Liu Dan, Li Jian, Xie Zengye, et al. Origin and significance of Sinian original and coexist bitumen of central Sichuan Basin[J]. Petroleum Geology & Experiment, 2014, 36(2): 218-223. | |
2 | 陈哲龙,柳广弟,曹正林,等. 储层沥青成因及其石油地质意义——以准噶尔盆地玛湖凹陷百口泉组为例[J]. 中国矿业大学学报,2018,47(2):391-399. |
Chen Zhelong, Liu Guangdi, Cao Zhenglin, et al. Origin of solid bitumen and its significance to petroleum geology: A case study of Baikouquan formation in Mahu sag of Junggar basin[J]. Journal of China University of Mining & Technology, 2018, 47(2): 391-399. | |
3 | 刘德汉,肖贤明,田辉,等 .应用流体包裹体和沥青特征判别天然气的成因[J].石油勘探与开发,2009,36(3):375-382. |
Liu Dehan, Xiao Xianming, Tian Hui, et al. Identification of na⁃tural gas origin using the characteristics of bitumen and fluid inclusions[J]. Petroleum Exploration and Development, 2009, 36(3): 375-382. | |
4 | 徐国盛,徐燕丽,袁海锋,等 .川中-川东南震旦系-下古生界烃源岩及储层沥青的地球化学特征[J].石油天然气学报(江汉石油学院学报),2007,29(4):45-51. |
Xu Guosheng, Xu Yanli, Yuan Haifeng, et al. Geochemical characteristics of source rocks and reservoir bitumen of Sinian⁃lower Palaeozoic in the middle⁃southwest of Sichuan Basin[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Insititute), 2007, 29(4): 45-51. | |
5 | 谢增业,张本健,杨春龙,等.川西北地区泥盆系天然气沥青地球化学特征及来源示踪[J].石油学报,2018,39(10):1103-1118. |
Xie Zengye, Zhang Benjian, Yang Chunlong, et al. Geochemical characteristics and source trace of the Devonian natural gas and bitumen in Northwest Sichuan Basin[J]. Acta Petrolei Sinica, 2018, 39(10):1103-1118. | |
6 | 李伟,胡国艺,周进高. 四川盆地桐湾期古隆起震旦系储层沥青特征与天然气聚集机理[J]. 天然气工业,2015,35(6):14-23. |
Li Wei, Hu Guoyi, Zhou Jingao. Asphalt features and gas accumulation mechanism of Sinian reservoirs in the Tongwan Palaeo⁃uplift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(6): 14-23. | |
7 | 郭旭升,胡东风,黄仁春,等. 川东北地区胡家坝震旦系灯影组古油藏特征及其油气勘探意义[J]. 石油与天然气地质,2020,41(4):673-683. |
Guo Xusheng, Hu Dongfeng, Huang Renchun, et al.Feature of paleo‑oil pools in the Sinian Dengying Formation, northeastern Sichuan Basin, and its significance to exploration[J]. Oil & Gas Geology, 2020, 41(4): 673-683. | |
8 | 马新华,闫海军,陈京元 等. 四川盆地安岳气田震旦系气藏叠合岩溶发育模式与主控因素[J]. 石油与天然气地质,2021,42(6):1281-1294. |
Ma Xinhua, Yan Haijun, Chen Jingyuan, et al.Development patterns and constraints of superimposed karst reservoirs in Sinian Dengying Formation, Anyue gas field, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6): 1281-1294. | |
9 | 郝彬,赵文智,胡素云,等. 川中地区寒武系龙王庙组沥青成因与油气成藏史[J]. 石油学报,2017,38(8):863-875. |
Hao Bin, Zhao Wenzhi, Hu Suyun, et al. Bitumen genesis and hydrocarbon accumulation history of the Cambrian Longwangmiao Formation in Central Sichuan Basin[J]. Acta Petrolei Sinica, 2017, 38(8): 863-875. | |
10 | 蒋有录,刘学嘉,赵贤正,等. 根据储层沥青和流体包裹体综合判识油气成藏期:以黄骅坳陷北大港古生界潜山为例[J]. 地球科学,2020,45(3):980-988. |
Jiang Youlu, Liu Xuejia, Zhao Xianzheng, et al. Comprehensive identification of oil and gas accumulation period by fluid inclusion technique and reservoir bitumen characteristics: A case study of the Paleozoic buried hill in Beidagang, Huanghua Depression[J]. Earth Science, 2020, 45(3): 980-988. | |
11 | 匡立春,齐雪峰,王绪龙,等. 新疆西准噶尔布龙果尔古油藏的发现及其石油地质意义[J].地质学报,2011,85(2):224-233. |
Kuang Lichun, Qi Xuefeng, Wang Xulong, et al. Discovery of Bulongguoer ancient reservoir in west Junggar, Xinjiang and its petroleum geologic significance[J]. Acta Geologica Sinica, 2011, 85(2): 224-233. | |
12 | 林煜,李相文,陈康,等. 深层海相碳酸盐岩储层地震预测关键技术与效果——以四川盆地震旦系-寒武系与塔里木盆地奥陶系油气藏为例[J]. 石油与天然气地质,2021,42(3):717-727. |
Lin Yu, Li Xiangwen, Chen Kang, et al.Key seismic techniques for predicting deep marine carbonate reservoirs and the effect analysis: A case study on the Sinian‑Cambrian reservoirs in the Sichuan Basin and the Ordovician reservoirs in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3): 717-727. | |
13 | Parnell J, Swainbank I. Pb-Pb dating of hydrocarbon migration into a bitumen⁃bearing ore deposit, North Wales[J]. Geology, 1990, 18(10): 1028-1030. |
14 | Finlay A J, Selby D, Osborne M J. Re⁃Os geochronology and fingerprinting of United Kingdom Atlantic margin oil: Temporal implications for regional petroleum systems[J]. Geology, 2011, 39(5): 475-478. |
15 | 沈传波, Selby D, 梅廉夫,等. 油气成藏定年的Re⁃Os同位素方法应用研究[J].矿物岩石,2011,31(4):87-93. |
Shen Chuanbo, Selby D, Mei Lianfu, et al. Advances in the study of Re⁃Os geochronology and tracing of hydrocarbon generation and accumulation[J]. Journal of Mineralogy and Petrology, 2011, 31(4): 87-93. | |
16 | 丰国秀,陈盛吉 .岩石中沥青反射率与镜质体反射率之间的关系[J].天然气工业,1988,8(3):20-25. |
Feng Guoxiu, Chen Shengji. Relationship between the reflectance of bitumen and vitrinite in rock[J]. Natural Gas Industry, 1988, 8(3): 20-25. | |
17 | Jacob H. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”)[J]. International Journal of Coal Geology, 1989, 11(1): 65-79. |
18 | Landis C R, and Castaño J R. Maturation and bulk chemical properties of a suite of solid hydrocarbons[J]. Organic Geochemistry, 1995, 22(1): 137-149. |
19 | Schoenherr J, Littke R, Urai J L, et al. Polyphase thermal evolution in the Infra⁃Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen[J]. Organic Geochemistry, 2007, 38(8): 1293-1318. |
20 | Misch D, Gross D, Hawranek G, et al. Solid bitumen in shales: Petrographic characteristics and implications for reservoir characterization[J]. International Journal of Coal Geology, 2019, 205: 14-31. |
21 | 刘德汉,肖贤明,田辉,等 .固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报,2013,58(13):1228-1241. |
Liu Dehan, Xiao Xianming, Tian Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1228-1241. | |
22 | 王茂林,肖贤明,魏强,等. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J].天然气地球科学,2015,26(9):1712-1718. |
Wang Maolin, Xiao Xianming, Wei Qiang, et al. Thermal maturation of solid bitumen in shale as revealed by Raman spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9): 1712-1718. | |
23 | 何登发,李德生,张国伟,等 .四川多旋回叠合盆地的形成与演化[J].地质科学,2011,46(3):589-606. |
He Dengfa, Li Desheng, Zhang Guowei, et al. Formation and devolution of multi⁃cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 43(6): 589-606. | |
24 | 段金宝,梅庆华,李毕松,等. 四川盆地震旦纪-早寒武世构造-沉积演化过程[J].地球科学,2019,44(3):738-755. |
Duan Jinbao, Mei Qinghua, Li Bisong, et al. Sinian⁃Early Cambrian tectonic⁃sedimentary evolution in Sichuan Basin[J]. Earth Science, 2019, 44(3): 738-755. | |
25 | 姜华,汪泽成,杜宏宇,等. 乐山-龙女寺古隆起构造演化与新元古界震旦系天然气成藏[J]. 天然气地球科学,2014,25(2):192-200. |
Jiang Hua, Wang Zecheng, Du Hongyu, et al. Tectonic evolution of the Leshan⁃Longnvsi paleo⁃uplift and reservoir formation of Neoproterozoic Sinian Gas[J]. Natural Gas Geoscience, 2014, 25(2): 192-200. | |
26 | 李宗银,姜华,汪泽成,等. 构造运动对四川盆地震旦系油气成藏的控制作用[J]. 天然气工业,2014,34(3):23-30. |
Li Zongyin, Jiang Hua, Wang Zechceng, et al. Control of tectonic movement on hydrocarbon accumulation in the Sinian strata, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 23-30. | |
27 | 汪泽成,姜华,王铜山,等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发,2014,41(3):305-312. |
Wang Zecheng, Jiang Hua, Wang Tongshan, et al. Paleo⁃geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2014, 41(3): 305-312. | |
28 | 汪泽成,王铜山,文龙,等. 四川盆地安岳特大型气田基本地质特征与形成条件[J]. 中国海上油气,2016,28(2):45-52. |
Wang Zecheng, Wang Tongshan, Wen Long, et al. Basic geological characteristics and accumulation conditions of Anyue giant gas field, Sichuan basin[J]. China Offshore Oil and Gas, 2016, 28(2): 45-52. | |
29 | 武赛军,魏国齐,杨威,等. 四川盆地桐湾运动及其油气地质意义[J].天然气地球科学,2016,27(1):60-70. |
Wu Saijun, Wei Guoqi, Yang Wei, et al. Tongwan Movement and its geologic significances in Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(1): 60-70. | |
30 | 殷积峰,谷志东,李秋芬. 四川盆地大川中地区深层断裂发育特征及其地质意义[J]. 石油与天然气地质,2013,34(3):376-382. |
Yin Jifeng, Gu Zhidong, Li Qiufen. Characteristics of deep-rooted faults and their geological significances in Dachuanzhong area, Sichuan Basin[J]. Oil & Gas Geology, 2013, 34(3): 376-382. | |
31 | 魏国齐,杨威,杜金虎,等. 四川盆地高石梯-磨溪古隆起构造特征及对特大型气田形成的控制作用[J]. 石油勘探与开发,2015,42(3):257-265. |
Wei Guoqi, Yang Wei, Du Jinhu, et al. Tectonic features of Gao⁃shiti⁃Moxi paleo⁃uplift and its controls on the formation of a giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(3): 257-265. | |
32 | 马德波,汪泽成,段书府,等 .四川盆地高石梯-磨溪地区走滑断层构造特征与天然气成藏意义[J].石油勘探与开发,2018,45(5):795-805. |
Ma Debo, Wang Zecheng, Duan Shufu, et al. Strike⁃slip faults and their significance for hydrocarbon accumulation in Gaoshiti⁃Moxi area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5): 795-805. | |
33 | 蒋裕强,陶艳忠,谷一凡,等 .四川盆地高石梯-磨溪地区灯影组热液白云石化作用[J].石油勘探与开发,2016,43(1):51-60. |
Jiang Yuqiang, Tao Yanzhong, Gu Yifan, et al. Hydrothermal dolomitization in Sinian Dengying Formation, Gaoshiti⁃Moxi area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(1): 51-60. | |
34 | 袁海锋,刘勇,徐昉昊,等 .川中安平店-高石梯构造震旦系灯影组流体充注特征及油气成藏过程[J].岩石学报,2014,30(3):727-736. |
Yuan Haifeng, Liu Yong, Xu Fanghao, et al. The fluid charge and hydrocarbon accumulation, Sinian reservoir, Anpingdian⁃Gao⁃shiti Structure, Central Sichuan Basin[J]. Acta Petrologica Sinica, 30(3): 727-736. | |
35 | 刘树根,孙玮,赵异华,等 .四川盆地震旦系灯影组天然气的差异聚集分布及其主控因素[J]. 天然气工业,2015,35(1):10-23. |
Liu Shugen, Sun Wei, Zhao Yihua, et al. Differential accumulation and distribution of natural gas and their main controlling factors in the Upper Sinian Dengying Fm, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 10-23. | |
36 | 李吉君,曹群,卢双舫,等 .四川盆地乐山-龙女寺古隆起震旦系天然气成藏史[J].石油与天然气地质,2016,37(1):30-36. |
Li Jijun, Cao Qun, Lu Shuangfang, et al. History of natural gas accumulation in Leshan⁃Longnysi Sinian paleo⁃uplift, Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(1): 30-36. | |
37 | 杨程宇,文龙,王铁冠,等. 川中隆起安岳气田古油藏成藏时间厘定[J]. 石油与天然气地质,2020,41(3):492-502. |
Yang Chengyu, Wen Long, Wang Tieguan, et al. Timing of hydrocarbon accumulation for paleo⁃oil reservoirs in Anyue gas field in Chuanzhong Uplift[J]. Oil & Gas Geology, 2020, 41(3): 492-502. | |
38 | Gao P, Liu G, Lash G G, et al. Occurrences and origin of reservoir solid bitumen in Sinian Dengying Formation dolomites of the Sichuan Basin, SW China[J]. International Journal of Coal Geology, 2018, 200: 135-152. |
39 | Henry D G, Jarvis I, Gillmore G, et al. Assessing low⁃maturity organic matter in shales using Raman spectroscopy: Effects of sam⁃ple preparation and operating procedure[J]. International Journal of Coal Geology, 2018, 191: 135-151. |
40 | Henry D G, Jarvis I, Gillmore G, et al. A rapid method for determining organic matter maturity using Raman spectroscopy-App⁃lication to Carboniferous organic⁃rich mudstones and coals[J]. International Journal of Coal Geology, 2019, 203: 87-98. |
41 | Mastalerza M, Drobniaka A, Stankiewicz A B. Origin, properties, and implications of solid bitumen in source⁃rock reservoirs-A review[J]. International Journal of Coal Geology, 2018, 195: 14-36. |
42 | 王晔,邱楠生,马中良,等. 固体沥青反射率与镜质体反射率的等效关系评价[J]. 中国矿业大学学报,2020,49(3):563-575. |
Wang Ye, Qiu Nansheng, Ma Zhongliang, et al. Evaluation of equivalent relationship between vitrinite reflectance and solid bitumen reflectance[J]. Journal of China University of Mining & Technology, 2020, 49(3): 563-575. | |
43 | Schmidt J S, Menezes T R, Souza I V A F, et al. Comments on empirical conversion of solid bitumen reflectance for thermal maturity evaluation[J]. International Journal of Coal Geology, 2019, 201: 44-50. |
44 | Wilkins R W T, Boudou R, Sherwood N, et al. Thermal maturity evaluation from inertinites by Raman spectroscopy-The ‘RaMM’ technique[J]. International Journal of Coal Geology, 2014, 128-129: 143-152. |
45 | Schito A, Romano C, Corrado S, et al. Diagenetic thermal evolution of organic matter by Raman spectroscopy[J]. Organic Geochemistry, 2017,106: 57-67. |
46 | 房忱琛,熊永强,李芸,等. 原油裂解过程中固体沥青的拉曼光谱演化特征[J].地球化学,2015,44(2):196-204. |
Fang Chenchen, Xiong Yongqiang, Li Yun, et al. Raman spectra characteristics of solid bitumens generated during oil cracking[J]. Geochimica, 2015, 44(2): 196-204. | |
47 | Spötl C, Houseknecht D W, Jaques R C. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: a combined petrographic and Raman spectrometric study[J]. Organic Geochemistry, 1998, 28(9-10): 535-542. |
48 | 鲍芳, 俞凌杰, 芮晓庆, 等. 页岩中有机质孔隙非均质性的微观结构及电镜—拉曼联用研究[J]. 石油实验地质, 2021, 43(5): 871-879. |
Bao Fang, Yu Lingjie, Rui Xiaoqing, et al. Microstructure and SEM‑ Raman study of organic matter pore heterogeneity in shale[J]. Petroleum Geology &Experiment, 2021, 43(5): 871-879. | |
49 | Kelemen S R, Fang H L. Maturity trends in Raman spectra from kerogen and coal[J]. Energy & Fuels, 2001, 15: 653-658. |
[1] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[2] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[3] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[4] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[5] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[6] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[7] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[8] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[9] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[10] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[11] | 李双建, 李智, 张磊, 李英强, 孟宪武, 王海军. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
[12] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[13] | 张谦, 金之钧, 朱如凯, 刘全有, 张瑞, 王冠平, 陈万利, Littke Ralf. 岩石热解方法应用于页岩油气研究需注意的几个问题[J]. 石油与天然气地质, 2023, 44(4): 1020-1032. |
[14] | 刘昇, 范存辉, 张本健, 张亚, 王尉, 罗冰, 白晓亮. 四川盆地东部中二叠统茅口组孤峰段展布特征及其油气地质意义[J]. 石油与天然气地质, 2023, 44(4): 993-1008. |
[15] | 吴冬, 邓虎成, 熊亮, 曹凯旋, 董晓霞, 赵勇, 魏力民, 王同, 马若龙. 四川盆地及其周缘下寒武统麦地坪组-筇竹寺组层序充填和演化模式[J]. 石油与天然气地质, 2023, 44(3): 764-777. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||