石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (4): 829-845.doi: 10.11743/ogg20230403
张瑞1,2,3(), 金之钧1,2,3(), 朱如凯4, 李明松2,3, 惠潇5, 魏韧1,2, 贺翔武1,2, 张谦1,2,3
收稿日期:
2023-02-20
修回日期:
2023-05-30
出版日期:
2023-08-01
发布日期:
2023-08-09
通讯作者:
金之钧
E-mail:ruizhangxu@pku.edu.cn;jinzj1957@pku.edu.cn
第一作者简介:
张瑞(1990—),男,博士、助理研究员,页岩油气富集机理、旋回地层学。E-mail: 基金项目:
Rui ZHANG1,2,3(), Zhijun JIN1,2,3(), Rukai ZHU4, Mingsong LI2,3, Xiao HUI5, Ren WEI1,2, Xiangwu HE1,2, Qian ZHANG1,2,3
Received:
2023-02-20
Revised:
2023-05-30
Online:
2023-08-01
Published:
2023-08-09
Contact:
Zhijun JIN
E-mail:ruizhangxu@pku.edu.cn;jinzj1957@pku.edu.cn
摘要:
页岩的有机质丰度和纹层类型是页岩油勘探研究的重点内容。中国陆相富有机质页岩层系的沉积相变复杂且非均质性强,沉积速率的准确判识面临许多挑战。中国典型陆相盆地富有机质页岩的沉积速率多在5 cm/kyr以上,咸化湖盆富有机质页岩层系沉积速率最高可达40 cm/kyr。高精度年代学框架结合旋回地层学统计调谐可以追踪沉积速率随地层深度的变化,而页岩的相对沉积速率可以通过稀土元素配分模式、晶体粒径分布理论和星际尘埃特征元素丰度等方法判识。不同类型或不同时代的地层序列沉积速率比较,需要考虑地层完整性和差异压实等干扰因素。沉积速率是页岩有机质富集的重要影响因素,其对有机质稀释的临界值通常低于5 cm/kyr。水动力条件和水体盐度影响碎屑颗粒的絮凝作用,不同类型细粒沉积物的沉积速率差异有利于纹层结构的形成。页岩沉积速率研究需要融合包括地质年代学、岩石学、旋回地层学、地球化学和沉积物理模拟在内的先进理论和方法,以深入了解页岩沉积演化机理。揭示陆相页岩沉积速率与页岩油富集之间的内在联系,对页岩油勘探具有一定的指导意义。
中图分类号:
表1
中国典型陆相富有机质页岩层系地质特征与沉积速率"
盆地/地区 | 地层 | 地质 年代 | 参考 年龄/Ma | 盆地 环境 | 岩性 组合 | 累积厚度/m | TOC/% | 井位 或剖面 | 沉积速率/(cm/kyr) | 文献 来源 |
---|---|---|---|---|---|---|---|---|---|---|
柴达木盆地英雄岭凹陷 | 下干柴沟组上段 | 渐新世 | 33.9 ~ 30.1 | 咸水-盐湖 | 泥页岩、碳酸盐岩、混积岩 | 1 000 ~ 1 500 | 0.6 ~2.7 | C2-4井、 S62井 | 17.0 ~ 34.0 | [ |
渤海湾盆地饶阳凹陷 | 沙河街组 一段 | 渐新世 | 31.9 ~ 28.9 | 半咸水- 咸水 | 灰质泥页岩夹 砂岩、混积岩 | 10 ~ 240 | 0.4 ~6.2 | N62井 | 9.1 ~ 22.2 | [ |
渤海湾盆地东营凹陷 | 沙河街组 三段 | 始新世 | 42.5 ~ 42.0 | 半咸水- 咸水 | 灰质泥页岩夹 砂岩、混积岩 | 300 ~ 1 000 | 1.5 ~10.0 | FY1井 | 7.0 ~ 13.1 | [ |
渤海湾盆地东濮凹陷 | 沙河街组 三段至一段 | 始新世— 渐新世 | 42.5 ~ 28.9 | 半咸水- 咸水 | 灰质泥页岩夹 砂岩、混积岩 | 1 000 ~ 2 000 | 0.5 ~7.8 | P140井 | 10.0 ~ 15.0 | [ |
渤海湾盆地东营凹陷 | 孔店组 | 古新世— 始新世 | 65.6 ~ 50.8 | 咸水-盐湖 | 灰质泥页岩、 砂岩、膏盐岩 | 200 ~ 800 | 0.3 ~7.0 | SK-1井、W46井 | 23.6 ~ 40.8 | [ |
江汉盆地 潜江凹陷 | 潜江组 | 始新世—渐新世 | 43.1 ~ 29.4 | 咸水-盐湖 | 泥质灰岩与泥质白云岩、膏盐岩 | 50 ~ 650 | 0.5 ~12.0 | Yan 5井、 Yan 6井 | 10.8 ~ 34.0 | [ |
南襄盆地 泌阳凹陷 | 核桃园组 | 始新世—渐新世 | 49.6 ~ 28.9 | 咸水-盐湖 | 灰质泥页岩夹 砂岩、混积岩 | 1 000 ~ 2 000 | 0.5 ~5.9 | B270井、BS1井 | 14.0 ~ 18.0 | [ |
松辽盆地 古龙凹陷 | 嫩江组 一+二段 | 晚白垩世 | 84.7 ~ 82.4 | 淡水- 微咸水 | 泥页岩 夹粉砂岩 | < 120 | 2.0 ~10.0 | SK-2井 东孔 | 6.6 ~ 8.4 | [ |
松辽盆地 古龙凹陷 | 青山口组 | 晚白垩世 | 91.3 ~ 86.0 | 淡水- 微咸水 | 泥页岩 夹粉砂岩 | 100 ~ 150 | 0.9 ~9.0 | SK-1井 南孔 | 8.0 ~ 10.0 | [ |
酒泉盆地 青西凹陷 | 下沟组 | 早白垩世 | 125.9 ~ 115.6 | 咸水-盐湖 | 白云质泥岩 夹粉砂岩 | > 1 000 | 1.0 ~2.5 | L 8井、 L14井 | 8.5 ~ 19.8 | [ |
四川盆地 中北部 | 自流井组 大安寨段 | 早侏罗世 | < 201.3 | 淡水- 微咸水 | 泥页岩 夹灰岩 | 40 ~ 180 | 0.1 ~5.0 | G61井、 G105X井 | 12.5 ~ 16.9 | [ |
四川盆地 东北部 | 须家河组 | 晚三叠世 | 207.2 ~ 201.3 | 淡水- 微咸水 | 泥页岩 夹砂岩 | 100 ~ 200 | 0.5 ~9.9 | 须家河剖面、七里峡剖面 | 10.4 ~ 14.6 | [ |
鄂尔多斯盆地伊陕斜坡 | 延长组7段 | 中三叠世 | 241.6 ~ 241.1 | 淡水- 微咸水 | 泥页岩 夹粉砂岩 | 10 ~ 100 | 2.0 ~20.0 | YY1井、瑶曲剖面 | 4.0 ~ 5.0 | [ |
准噶尔盆地 吉木萨尔凹陷 | 芦草沟组 | 早二叠世 | 290.4 ~ 286.2 | 半咸水- 咸水 | 泥页岩夹 白云岩、混积岩 | 30 ~ 50 | 1.2 ~8.9 | J174井、J251井 | 8.0 ~ 10.0 | [ |
准噶尔盆地 玛湖凹陷 | 风城组 | 早二叠世 | 301.9 ~ 297.0 | 咸水-碱湖 | 泥页岩夹 白云岩、膏盐岩、 混积岩 | 200 ~ 1 400 | 1.2 ~2.0 | MY1井、FN14井 | 9.0 ~ 19.0 | [ |
表2
中国典型海相富有机质页岩层系地质特征与沉积速率"
盆地/地区 | 地层 | 地质年代 | 参考年龄/Ma | 岩性组合 | 累积厚度/ m | TOC/% | 井位或剖面 | 沉积速率/(cm/kyr) | 文献来源 |
---|---|---|---|---|---|---|---|---|---|
四川盆地 长宁地区 | 五峰组-龙马溪组一段 | 晚奥陶世— 早志留世 | 445.2 ~ 440.8 | 泥页岩、硅质岩 | 200 ~ 300 | 1.6 ~ 5.7 | 双河剖面 | 0.7 ~ 3.1 | [ |
鄂尔多斯盆地西南缘 | 平凉组 | 晚奥陶世 | 458.4 ~ 453.0 | 泥页岩、灰岩 | < 700 | 0.3 ~ 0.6 | 官庄剖面 | 0.9 ~ 1.3 | [ |
塔里木盆地 柯坪地区 | 萨尔干组 | 中-晚 奥陶世 | 464.0 ~ 458.0 | 泥页岩、灰岩 | 0 ~ 120 | 0.6 ~ 5.7 | 大湾沟- 羊吉坎剖面 | 0.2 ~ 0.7 | [ |
扬子地台 贵州地区 | 大塘坡组 | 新元古代 | 663.0 ~ 654.0 | 泥页岩、粉砂岩 | 180 ~ 550 | 0.1 ~ 6.3 | ZK1909井 | 2.6 ~ 3.5 | [ |
华北地台 燕辽坳陷 | 下马岭组 | 中元古代 | <1 400.0 | 泥页岩、硅质岩 | 175 ~ 335 | 3.7 ~ 23.0 | 下花园剖面 | 0.5 ~ 0.8 | [ |
华北地台 燕辽坳陷 | 洪水庄组 | 中元古代 | <1 450.0 | 泥页岩、灰岩 | 37 ~ 57 | 3.4 ~ 7.9 | YJ2井 | 3.0 ~ 5.0 | [ |
表3
沉积速率研究方法对比"
方法分类 | 方法举例 | 适用条件 | 主要优势 | 存在问题 | |
---|---|---|---|---|---|
方法 地质年代学与统计学 | 绝对年龄 框架约束法 | 锆石LA-ICPMS, SIMS和ID-TIMS定年 | 含有凝灰岩夹层的页岩层系剖面 | 准确计算出平均沉积速率 | 难以获得合适的锆石样品 |
自生矿物K-Ar,40Ar/39Ar, Rb-Sr和Re-Os同位素定年 | 不含凝灰岩夹层的黑色页岩剖面 | 直接利用沉积岩自生矿物定年且具有较高的年代学精度 | 对样品类型要求较高,分析和处理过程较为复杂 | ||
旋回地层学 统计调谐法 | 平均频谱误差分析法(ASM) | 连续沉积的页岩层系剖面 | 高分辨率刻画页岩剖面的沉积速率或追踪沉积速率的变化 | 需要人为选择目标天文曲线、调整滑动窗口等参数 | |
时间标尺优化法(TimeOpt) | |||||
相关系数分析法(COCO) | |||||
贝叶斯反演法 | |||||
方法 地球化学 | 稀土元素配分模式法 | (La/Yb)N值 | 深海相和深湖相页岩样品 | 获取相对沉积速率 | 稀土元素的富集和亏损受多种因素影响 |
晶体粒径分布模式法 | 莓状黄铁矿粒径分布 | 深海相和深湖相页岩样品 | 获取相对沉积速率 | 莓状黄铁矿的数量少导致抽样误差且影响统计结果 | |
星际尘埃特征元素丰度法 | 特征元素3He,Ir和Co 丰度值 | 深海相和深湖相页岩样品 | 获取相对沉积速率 | 火山活动、生物富集作用、陆源物质稀释效应均影响实验结果 |
1 | SADLER P M. Sediment accumulation rates and the completeness of stratigraphic sections[J]. The Journal of Geology, 1981, 89(5): 569-584. |
2 | CHEN Shuping, JIN Zhijun, WANG Yi, et al. Sedimentation rate rhythms: Evidence from filling of the tarim basin, northwest China[J]. Acta Geologica Sinica(English Edition), 2015, 89(4): 1264-1275. |
3 | GINGERICH P D. Rates of geological processes[J]. Earth-Science Reviews, 2021, 220: 103723. |
4 | TYSON R V. Sedimentation rate, dilution, preservation and total organic carbon: Some results of a modelling study[J]. Organic Geochemistry, 2001, 32(2): 333-339. |
5 | KATZ B J. Controlling factors on source rock development—a review of productivity, preservation, and sedimentation rate[M]//HARRIS N B. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Broken Arrow: SEPM Society for Sedimentary Geology, 2005: 7-16. |
6 | 朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264. |
ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264. | |
7 | 张瑞, 金之钧, GILLMAN M, 等. 太阳系长期旋回在中生代沉积盆地中的记录[J]. 中国科学: 地球科学, 2023, 53(2): 345-362. |
ZHANG Rui, JIN Zhijun, GILLMAN M, et al. Long-term cycles of the Solar System concealed in the Mesozoic sedimentary basin record[J]. Science China Earth Sciences, 2023, 53(2): 345-362. | |
8 | 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. |
JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. | |
9 | 孙焕泉, 蔡勋育, 周德华, 等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探, 2019, 24(5): 569-575. |
SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569-575. | |
10 | 焦方正, 邹才能, 杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发, 2020, 47(6): 1067-1078. |
JIAO Fangzheng, ZOU Caineng, YANG Zhi. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 47(6): 1067-1078. | |
11 | 马永生, 蔡勋育, 赵培荣, 等. 中国陆相页岩油地质特征与勘探实践[J]. 地质学报, 2022, 96(1): 155-171. |
MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al. Geological characteristics and exploration practices of continental shale oil in China[J]. Acta Geologica Sinica, 2022, 96(1): 155-171. | |
12 | 胡素云, 白斌, 陶士振, 等. 中国陆相中高成熟度页岩油非均质地质条件与差异富集特征[J]. 石油勘探与开发, 2022, 49(2): 224-237. |
HU Suyun, BAI Bin, TAO Shizhen, et al. Heterogeneous geological conditions and differential enrichment of medium and high maturity continental shale oil in China[J]. Petroleum Exploration and Development, 2022, 49(2): 224-237. | |
13 | ZOU Caineng, ZHU Rukai, CHEN Zhongqiang, et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 2019, 189: 51-78. |
14 | 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2): 1-13. |
LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13. | |
15 | 宋岩, 罗群, 姜振学, 等. 中国中西部沉积盆地致密油富集机理及其主控因素[J]. 石油勘探与开发, 2021, 48(2): 421-433. |
SONG Yan, LUO Qun, JIANG Zhenxue, et al. Enrichment of tight oil and its controlling factors in central and western China[J]. Petroleum Exploration and Development, 2021, 48(2): 421-433. | |
16 | 姜在兴, 张建国, 孔祥鑫, 等. 中国陆相页岩油气沉积储层研究进展及发展方向[J]. 石油学报, 2023, 44(1): 45-71. |
JIANG Zaixing, ZHANG Jianguo, KONG Xiangxin, et al. Research progress and development direction of continental shale oil and gas deposition and reservoirs in China[J]. Acta Petrolei Sinica, 2023, 44(1): 45-71. | |
17 | MEYERS S R, SAGEMAN B B. Quantification of deep-time orbital forcing by average spectral misfit[J]. American Journal of Science, 2007, 307(5): 773-792. |
18 | MALINVERNO A, ERBA E, HERBERT T D. Orbital tuning as an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE[J]. Paleoceanography, 2010, 25(2): 1-16. |
19 | MEYERS S R. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization[J]. Paleoceanography, 2015, 30(12): 1625-1640. |
20 | LI Mingsong, KUMP L R, HINNOV L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179. |
21 | 彭军, 于乐丹, 许天宇, 等. 湖相泥页岩地层米氏旋回测井识别及环境响应特征——以渤海湾盆地济阳坳陷东营凹陷樊页1井Es4scs为例[J]. 石油与天然气地质, 2022, 43(4): 957-969. |
PENG Jun, YU Ledan, XU Tianyu, et al. Logging identification of Milankovitch cycle and environmental response characteristics of lacustrine shale—A case study on Es4scs in Well Fanye 1, Dongying Sag, Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(4): 957-969. | |
22 | SHI Juye, JIN Zhijun, LIU Quanyou, et al. Terrestrial sedimentary responses to astronomically forced climate changes during the Early Paleogene in the Bohai Bay Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 502: 1-12. |
23 | WANG Meng, CHEN Honghan, HUANG Chunju, et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China[J]. Earth and Planetary Science Letters, 2020, 535: 116116. |
24 | 杜威, 纪友亮, 季梦瑶, 等. 渤海湾盆地饶阳凹陷早渐新世高精度年代地层格架建立及意义[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 142-151. |
DU Wei, JI Youliang, JI Mengyao, et al. Establishment and significance of high-resolution Early Oligocene chronostratigraphic framework in Raoyang Sag, Bohai Bay Basin[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(4): 142-151. | |
25 | XU Ke, CHEN Honghan, HUANG Chunju, et al. Astronomical time scale of the Paleogene lacustrine paleoclimate record from the Nanxiang Basin, Central China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 532: 109253. |
26 | HUANG He, GAO Yuan, JONES M M, et al. Astronomical forcing of Middle Permian terrestrial climate recorded in a large paleolake in northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109735. |
27 | LI Mingsong, ZHANG Yang, HUANG Chunju, et al. Astronomical tuning and magnetostratigraphy of the Upper Triassic Xujiahe Formation of South China and Newark Supergroup of North America: Implications for the Late Triassic time scale[J]. Earth and Planetary Science Letters, 2017, 475: 207-223. |
28 | 李旭杰. 川中地区公39井区大安寨段旋回地层研究[D]. 成都: 西南石油大学, 2016. |
LI Xujie. Study on cyclic stratigraphy of Da’anzhai Member in Gong 39 Well area in Central Sichuan[D]. Chengdu: Southwest Petroleum University, 2016. | |
29 | YANG Hanfei, HUANG Yongjian, MA Chao, et al. Recognition of milankovitch cycles in XRF core-scanning records of the Late Cretaceous Nenjiang Formation from the Songliao Basin (northeastern China) and their paleoclimate implications[J]. Journal of Asian Earth Sciences, 2020, 194: 104183. |
30 | WU Huaichun, ZHANG Shihong, JIANG Ganqing, et al. Astrochronology of the early turonian-early campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the solar system[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 55-70. |
31 | CHU Runjian, WU Huaichun, ZHU Rukai, et al. Orbital forcing of Triassic megamonsoon activity documented in lacustrine sediments from Ordos Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 541: 109542. |
32 | ZHU Rukai, CUI Jingwei, DENG Shenghui, et al. High-precision dating and geological significance of Chang 7 tuff zircon of the Triassic Yanchang Formation, Ordos Basin in Central China[J]. Acta Geologica Sinica(English Edition), 2019, 93(6): 1823-1834. |
33 | JIN Siding, DENG Hucheng, ZHU Xing, et al. Orbital control on cyclical organic matter accumulation in Early Silurian Longmaxi Formation shales[J]. Geoscience Frontiers, 2020, 11(2): 533-545. |
34 | FANG Qiang, WU Huaichun, HINNOV L A, et al. A record of astronomically forced climate change in a late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China[J]. Sedimentary Geology, 2016, 341: 163-174. |
35 | FANG Qiang, WU Huaichun, WANG Xunlian, et al. An astronomically forced cooling event during the Middle Ordovician[J]. Global and Planetary Change, 2019, 173: 96-108. |
36 | BAO Xiujuan, ZHANG Shihong, JIANG Ganqing, et al. Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China[J]. Earth and Planetary Science Letters, 2018, 483: 52-63. |
37 | ZHANG Shuichang, WANG Xiaomei, HAMMARLUND E U, et al. Orbital forcing of climate 1.4 billion years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): E1406-E1413. |
38 | CHENG Dawei, ZHANG Shuichang, ZHANG Zhijie, et al. An astronomically calibrated stratigraphy of the Mesoproterozoic Hongshuizhuang Formation, North China: Implications for pre-Phanerozoic changes in Milankovitch orbital parameters[J]. Journal of Asian Earth Sciences, 2020, 199: 104408. |
39 | 裴梓薇, 吴颜雄, 武云昭, 等. 柴达木盆地英雄岭凹陷古近纪沉积速率研究及其油气勘探意义[C]//中国石油新疆油田分公司(新疆砾岩油藏实验室), 西安石油大学, 陕西省石油学会. 2022油气田勘探与开发国际会议论文集Ⅲ. 西安: 西安石油大学, 2022: 469-478. |
PEI Ziwei, WU Yanxiong, WU Yunzhao, et al. Deposition rate of the Paleogene in Yingxiongling Depression, Qaidam Basin and its significance for oil and gas exploration[C]//PetroChina Xinjiang Oilfield Branch (Xinjiang Conglomerate Reservoir Laboratory), Xi’an Shiyou University, Shaanxi Petroleum Institute. Proceedings III of the International Conference on Exploration and Development of Oil and Gas Fields. Xi’an: Xi’an Shiyou University, 2022: 469-478. | |
40 | LIU Zhanhong, HUANG Chunju, ALGEO T J, et al. High-resolution astrochronological record for the Paleocene-Oligocene (66-23 Ma) from the rapidly subsiding Bohai Bay Basin, northeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510: 78-92. |
41 | HUANG Chunju, HINNOV L. Astronomically forced climate evolution in a saline lake record of the middle Eocene to Oligocene, Jianghan Basin, China[J]. Earth and Planetary Science Letters, 2019, 528: 115846. |
42 | CHEN Guo, GANG Wenzhe, TANG Haizhong, et al. Astronomical cycles and variations in sediment accumulation rate of the terrestrial Lower Cretaceous Xiagou Formation from the Jiuquan Basin, NW China[J]. Cretaceous Research, 2020, 109: 104156. |
43 | HUANG He, GAO Yuan, MA Chao, et al. Astronomical constraints on the development of alkaline lake during the Carboniferous-Permian Period in North Pangea[J]. Global and Planetary Change, 2021, 207: 103681. |
44 | TANG Yong, ZHENG Menglin, WANG Xiatian, et al. The floating astronomical time scale for the terrestrial Early Permian Fengcheng Formation from the Junggar Basin and its stratigraphic and palaeoclimate implications[J]. Geological Journal, 2022, 57(11): 4842-4856. |
45 | 年涛, 姜在兴, 刘惠民, 等. 东营凹陷孔一段 “红—灰” 岩层旋回沉积记录: 以王家岗地区王46井为例[J]. 地质科技通报, 2022, 41(3): 32-43. |
NIAN Tao, JIANG Zaixing, LIU Huimin, et al. Cyclic sedimentary record of “red-greyish green” beds in the first Member of Eocene Kongdian Formation (Ek1), Dongying Sag: An example from the Well Wang 46 in Wangjiagang area[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 32-43. | |
46 | BERGER A, LOUTRE M F, LASKAR J. Stability of the astronomical frequencies over the earth’s history for paleoclimate studies[J]. Science, 1992, 255(5044): 560-566. |
47 | LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. |
48 | MEYERS S R. Cyclostratigraphy and the problem of astrochronologic testing[J]. Earth-Science Reviews, 2019, 190: 190-223. |
49 | 谭先锋, 王佳, 雷丽丹, 等. 早古近纪陆相断陷型湖泊物质分异作用及其对 “PETM” 事件的响应: 以济阳坳陷孔店组为例[J]. 地球科学, 2016, 41(11): 1893-1908. |
TAN Xianfeng, WANG Jia, LEI Lidan, et al. Material differentiation and its response to the “PETM” events in continental fault lake during the Early Paleogene period: A case study of Kongdian Formation in Jiyang Depression[J]. Earth Science, 2016, 41(11): 1893-1908. | |
50 | JIN Simin, KEMP D B, JOLLEY D W, et al. Large-scale, astronomically paced sediment input to the North Sea Basin during the Paleocene Eocene Thermal Maximum[J]. Earth and Planetary Science Letters, 2022, 579: 117340. |
51 | LI Mingsong, BRALOWER T J, KUMP L R, et al. Astrochronology of the Paleocene-Eocene thermal maximum on the Atlantic coastal plain[J]. Nature Communications, 2022, 13(1): 5618. |
52 | VIMPERE L, SPANGENBERG J E, ROIGE M, et al. Carbon isotope and biostratigraphic evidence for an expanded Paleocene-Eocene Thermal Maximum sedimentary record in the deep Gulf of Mexico[J]. Geology, 2023, 51(4): 334-339. |
53 | BOWRING S A, SCHMITZ M D. High-precision U-Pb zircon geochronology and the stratigraphic record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 305-326. |
54 | 吴怀春, 王成善, 张世红, 等. “地时”(Earthtime) 研究计划: “深时”(Deep Time) 记录的定年精度与时间分辨率[J]. 现代地质, 2011, 25(3): 419-428. |
WU Huaichun, WANG Chengshan, ZHANG Shihong, et al. “Earthtime” project: Dating precision and temporal resolution in the “deep time” record[J]. Geoscience, 2011, 25(3): 419-428. | |
55 | 李献华, 柳小明, 刘勇胜, 等. LA-ICPMS锆石U-Pb定年的准确度: 多实验室对比分析[J]. 中国科学: 地球科学, 2015, 45(9): 1294-1303. |
LI Xianhua, LIU Xiaoming, LIU Yongsheng, et al. Accuracy of LA-ICPMS zircon U-Pb age determination: An inter-laboratory comparison[J]. Science China Earth Sciences, 2015, 45(9): 1294-1303. | |
56 | 邹才能, 杨智, 孙莎莎, 等. “进源找油”: 论四川盆地页岩油气[J]. 中国科学: 地球科学, 2020, 50(7): 903-920. |
ZOU Caineng, YANG Zhi, SUN Shasha, et al. “Exploring petroleum inside source kitchen”: Shale oil and gas in Sichuan Basin[J]. Science China Earth Sciences, 2020, 50(7): 903-920. | |
57 | 黎茂稳, 马晓潇, 金之钧, 等. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. |
LI Maowen, MA Xiaoxiao, JIN Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J]. Oil & Gas Geology, 2022, 43(1): 1-25. | |
58 | ROCHÍN-BAÑAGA H, DAVIS D W, SCHWENNICKE T. First U-Pb dating of fossilized soft tissue using a new approach to paleontological chronometry[J]. Geology, 2021, 49(9): 1027-1031. |
59 | 储著银, 许继峰. 铼—锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245-264. |
CHU Zhuyin, XU Jifeng. Re-Os and PGE: Analytical methods and their applications in geosciences[J]. Advances in Earth Science, 2021, 36(3): 245-264. | |
60 | SELBY D, CREASER R A. Direct radiometric dating of the Devonian-Mississippian time-scale boundary using the Re-Os black shale geochronometer[J]. Geology, 2005, 33(7): 545-548. |
61 | MILANKOVIĆ M. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem[M]. Belgrade: Royal Serbian Academy, Section of Mathematical and Natural Sciences, 1941. |
62 | 金之钧, 范国章, 刘国臣. 一种地层精细定年的新方法[J]. 地球科学, 1999, 24(4): 379-382. |
JIN Zhijun, FAN Guozhang, LIU Guochen. A new method for accurate dating of strata[J]. Earth Science-Journal of China University of Geosciences, 1999, 24(4): 379-382. | |
63 | HINNOV L A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences[J]. GSA Bulletin, 2013, 125(11/12): 1703-1734. |
64 | HILGEN F, LOURENS L, PÄLIKE H, et al. Should unit-stratotypes and astrochronozones be formally defined?A dual proposal (including postscriptum)[J]. Newsletters on Stratigraphy, 2020, 53(1): 19-39. |
65 | 吴怀春, 房强. 旋回地层学和天文时间带[J]. 地层学杂志, 2020, 44(3): 227-238. |
WU Huaichun, FANG Qiang. Cyclostratigraphy and astrochronozones[J]. Journal of Stratigraphy, 2020, 44(3): 227-238. | |
66 | 宋翠玉, 吕大炜. 米兰科维奇旋回时间序列分析法研究进展[J]. 沉积学报, 2022, 40(2): 380-395. |
SONG Cuiyu, Dawei LYU. Advances in time series analysis methods for Milankovitch cycles[J]. Acta Sedimentologica Sinica, 2022, 40(2): 380-395. | |
67 | MCLENNAN S M, Anonymous. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303. |
68 | 陈孟晋, 宁宁, 胡国艺, 等. 鄂尔多斯盆地西部平凉组烃源岩特征及其影响因素[J]. 科学通报, 2007, 52(S1): 78-85. |
CHEN Mengjin, NING Ning, HU Guoyi, et al. Characteristics of hydrocarbon sources and controlling factors of Pingliang Formation, western Ordos Basin[J]. Chinese Science Bulletin, 2007, 52(S1): 78-85. | |
69 | CHEN Yuhang, ZHU Zengwu, ZHANG Long. Control actions of sedimentary environments and sedimentation rates on lacustrine oil shale distribution, an example of the oil shale in the Upper Triassic Yanchang Formation, southeastern Ordos Basin (NW China)[J]. Marine and Petroleum Geology, 2019, 102: 508-520. |
70 | WILKIN R T, BARNES H L, BRANTLEY S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912. |
71 | CHEN Guo, GANG Wenzhe, LIU Yazhou, et al. Organic matter enrichment of the Late Triassic Yanchang Formation (Ordos Basin, China) under dysoxic to oxic conditions: Insights from pyrite framboid size distributions[J]. Journal of Asian Earth Sciences, 2019, 170: 106-117. |
72 | ALVAREZ L W, ALVAREZ W, ASARO F, et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction[J]. Science, 1980, 208(4448): 1095-1108. |
73 | 周瑶琪, 陆永潮, 李思田, 等. 间断面缺失时间的计算问题——以贵州紫云上二叠统台地边缘礁剖面为例[J]. 地质学报, 1997, 71(1): 7-17. |
ZHOU Yaoqi, LU Yongchao, LI Sitian, et al. The missing time calculation of the hiatus surface——A case study of the Upper Permian reefs section at the platform margin, Ziyun, Guizhou[J]. Acta Geologica Sinica, 1997, 71(1): 7-17. | |
74 | MURPHY B H, FARLEY K A, ZACHOS J C. An extraterrestrial 3He-based timescale for the Paleocene-Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5098-5108. |
75 | 吴智平, 周瑶琪. 一种计算沉积速率的新方法——宇宙尘埃特征元素法[J]. 沉积学报, 2000, 18(3): 395-399. |
WU Zhiping, ZHOU Yaoqi. Using the characteristic elementsfrom meteoritic must in strata to calculate sedimentation rate[J]. Acta Sedimentologica Sinica, 2000, 18(3): 395-399. | |
76 | MUKHOPADHYAY S, FARLEY K A, MONTANARI A. A short duration of the Cretaceous-Tertiary boundary event: Evidence from extraterrestrial helium-3[J]. Science, 2001, 291(5510): 1952-1955. |
77 | BARRELL J. Rhythms and the measurements of geologic time[J]. GSA Bulletin, 1917, 28(1): 745-904. |
78 | ANDERS M H, KRUEGER S W, SADLER P M. A new look at sedimentation rates and the completeness of the stratigraphic record[J]. The Journal of Geology, 1987, 95(1): 1-14. |
79 | GUO Z T, RUDDIMAN W F, HAO Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163. |
80 | 储国强, 顾兆炎, 许冰, 等. 东北四海龙湾玛珥湖沉积物纹层计年与137Cs、210Pb测年[J]. 第四纪研究, 2005, 25(2): 202-207. |
CHU Guoqiang, GU Zhaoyan, XU Bing, et al. Varvechronology and radiometric dating (137Cs, 210Pb) from the Sihailongwan Maar, northeastern China[J]. Quaternary Sciences, 2005, 25(2): 202-207. | |
81 | BERGGREN A M, ALDAHAN A, POSSNERT G, et al. 10Be and solar activity cycles in varved lake sediments, AD 1900-2006[J]. Journal of Paleolimnology, 2010, 44(2): 559-569. |
82 | 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. |
LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology and Experiment, 2020, 42(4): 489-505. | |
83 | DING Xiujian, LIU Guangdi, ZHA Ming, et al. Relationship between total organic carbon content and sedimentation rate in ancient lacustrine sediments, a case study of Erlian Basin, northern China[J]. Journal of Geochemical Exploration, 2015, 149: 22-29. |
84 | ZHANG Wenzheng, YANG Weiwei, XIE Liqin. Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin, Central China[J]. International Journal of Coal Geology, 2017, 183: 38-51. |
85 | IBACH L E J. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments[J]. AAPG Bulletin, 1982, 66(2): 170-188. |
86 | 张慧芳, 吴欣松, 王斌, 等. 陆相湖盆沉积有机质富集机理研究进展[J]. 沉积学报, 2016, 34(3): 463-477. |
ZHANG Huifang, WU Xinsong, WANG Bin, et al. Research progress of the enrichment mechanism of sedimentary organics in lacustrine basin[J]. Acta Sedimentologica Sinica, 2016, 34(3): 463-477. | |
87 | 刘全有, 李鹏, 金之钧, 等. 湖相泥页岩层系富有机质形成与烃类富集——以长7为例[J]. 中国科学:地球科学, 2022, 52(2): 270-290. |
LIU Quanyou, LI Peng, JIN Zhijun, et al. Organic-rich formation and hydrocarbon enrichment of lacustrine shale strata: A case study of Chang 7 Member[J]. Science China Earth Sciences, 2022, 52(2): 270-290. | |
88 | 孙善勇, 刘惠民, 操应长, 等. 湖相深水细粒沉积岩米兰科维奇旋回及其页岩油勘探意义——以东营凹陷牛页1井沙四上亚段为例[J]. 中国矿业大学学报, 2017, 46(4): 846-858. |
SUN Shanyong, LIU Huimin, CAO Yingchang, et al. Milankovitch cycle of lacustrine deepwater fine-grained sedimentary rocks and its significance to shale oil: A case study of the upper Es4 member of Well NY1 in Dongying Sag[J]. Journal of China University of Mining & Technology, 2017, 46(4): 846-858. | |
89 | 汶玲娟, 鹿化煜, 强小科. 新近纪黄土高原红黏土粒度和沉积速率的空间变化及其揭示的古大气粉尘传输动力[J]. 中国科学(D辑: 地球科学), 2004, 34(8): 739-747. |
WEN Lingjuan, LU Huayu, QIANG Xiaoke. Changes in grain-size and sedimentation rate of the Neogene red clay deposits along the Chinese Loess Plateau and implications for the palaeowind system[J]. Science China Earth Sciences, 2004, 34(8): 739-747. | |
90 | 李胜利, 李顺利, 付超. 长试管静置沉降实验结果对湖盆细粒沉积纹层成因的启示[J]. 古地理学报, 2022, 24(3): 405-414. |
LI Shengli, LI Shunli, FU Chao. Implication of the large-tube settling experiment results on genesis of fine-grained deposition lamination of lacustrine basin[J]. Journal of Palaeogeography, 2022, 24(3): 405-414. | |
91 | HAAN C T, BARFIELD B J, HAYES J C. 7-Sediment properties and transport[M]//HAAN C T, BARFIELD B J, HAYES J C. Design Hydrology and Sedimentology for Small Catchments. San Diego: Academic Press, 1994: 204-237. |
92 | 周川闽, 张志杰, 邱振, 等. 细粒沉积物理模拟研究进展与展望[J]. 沉积学报, 2021, 39(1): 253-267. |
ZHOU Chuanmin, ZHANG Zhijie, QIU Zhen, et al. Laboratory experiments on sedimentation of fine-grained sediment: A prospect review[J]. Acta Sedimentologica Sinica, 2021, 39(1): 253-267. | |
93 | 吴科睿, 闫百泉, 孙雨, 等. 湖盆细粒沉积岩纹层形成机制及影响因素研究进展[J/OL]. 沉积学报: 1-29[2023-02-20]. . |
WU Kerui, YAN Baiquan, SUN Yu, et al. Research progress on the formation mechanism and influencing factors of fine-grained sedimentary rock varves in lake basins[J/OL]. Acta Sedimentologica Sinica: 1-29[2023-02-20]. . | |
94 | SCHIEBER J, SOUTHARD J, THAISEN K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763. |
95 | SCHIEBER J, SOUTHARD J B, KISSLING P, et al. Experimental deposition of carbonate mud from moving suspensions: Importance of flocculation and implications for modern and ancient carbonate mud deposition[J]. Journal of Sedimentary Research, 2013, 83(11): 1026-1032. |
96 | YAWAR Z, SCHIEBER J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34. |
97 | 赵文智, 朱如凯, 胡素云, 等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发, 2020, 47(6): 1079-1089. |
ZHAO Wenzhi, ZHU Rukai, HU Suyun, et al. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089. | |
98 | JOHNSON T C, BARRY S L, CHAN Y, et al. Decadal record of climate variability spanning the past 700 yr in the southern tropics of East Africa[J]. Geology, 2001, 29(1): 83-86. |
99 | OJALA A E K, FRANCUS P, ZOLITSCHKA B, et al. Characteristics of sedimentary varve chronologies-A review[J]. Quaternary Science Reviews, 2012, 43: 45-60. |
100 | SHI Juye, JIN Zhijun, LIU Quanyou, et al. Sunspot cycles recorded in Eocene lacustrine fine-grained sedimentary rocks in the Bohai Bay Basin, eastern China[J]. Global and Planetary Change, 2021, 205: 103614. |
101 | 朱如凯, 张婧雅, 李梦莹, 等. 陆相页岩油富集基础研究进展与关键问题[J/OL]. 地质学报: 1-23[2023-02-20]. . |
ZHU Rukai, ZHANG Jingya, LI Mengying, et al. Advances and key issues in the basic research of non-marine shale oil enrichment[J/OL]. Acta Geologica Sinica: 1-23[2023-02-20]. . |
[1] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[2] | 翟常博, 林良彪, 尤东华, 刘冯斌, 刘思雨. 川西南地区中二叠统茅口组一段沉积微相特征及有机质富集模式[J]. 石油与天然气地质, 2024, 45(2): 440-456. |
[3] | 梁岳立, 赵晓明, 张喜, 李树新, 葛家旺, 聂志宏, 张廷山, 祝海华. 轨道周期约束下海-陆过渡相页岩层系高精度层序界面识别及其地质意义[J]. 石油与天然气地质, 2023, 44(5): 1231-1242. |
[4] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[5] | 张天舒, 朱如凯, 蔡毅, 王华建, 吕丹, 周海燕, 付秀丽, 刘畅, 崔坤宁, 张素荣, 王浡, 吴松涛, 张婧雅, 姜晓华, 冯有良, 刘合. 松辽盆地古龙凹陷白垩系青山口组页岩层序等时格架下的有机质分布规律[J]. 石油与天然气地质, 2023, 44(4): 869-886. |
[6] | 彭军, 于乐丹, 许天宇, 韩浩东, 杨一茗. 天文地层学研究程序及其在渤海湾盆地东营凹陷的应用实例分析[J]. 石油与天然气地质, 2022, 43(6): 1292-1308. |
[7] | 彭军, 于乐丹, 许天宇, 韩浩东, 杨一茗, 曾垚, 王瑜斌. 湖相泥页岩地层米氏旋回测井识别及环境响应特征[J]. 石油与天然气地质, 2022, 43(4): 957-969. |
[8] | 朱如凯, 李梦莹, 杨静儒, 张素荣, 蔡毅, 曹琰, 康缘. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264. |
[9] | 张玉玺, 陈建文, 周江羽. 苏北地区早寒武世黑色页岩地球化学特征与有机质富集模式[J]. 石油与天然气地质, 2020, 41(4): 838-851. |
[10] | 石巨业, 金之钧, 刘全有, 黄振凯, 张瑞. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质, 2019, 40(6): 1205-1214. |
[11] | 许琳, 常秋生, 杨成克, 陶亲娥, 王仕莉, 费李莹, 徐士陆. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性[J]. 石油与天然气地质, 2019, 40(3): 535-549. |
[12] | 支东明, 唐勇, 杨智峰, 郭旭光, 郑孟林, 万敏, 黄立良. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 524-534. |
[13] | 徐田武, 张洪安, 李继东, 赵伟. 渤海湾盆地东濮凹陷盐湖相成烃成藏特征[J]. 石油与天然气地质, 2019, 40(2): 248-261. |
[14] | 贾东力, 田景春, 林小兵, 杨国华, 冯文新, 张翔, 唐艳, 杨辰雨. 塔里木盆地顺托果勒地区志留系柯坪塔格组米兰科维奇旋回沉积记录[J]. 石油与天然气地质, 2018, 39(4): 749-758. |
[15] | 谭先锋, 王萍, 王佳, 罗龙, 梁迈, 谭东萍, 况昊. 早始新世极热气候时期咸化湖盆混合沉积作用——以渤海湾盆地东营凹陷孔店组为例[J]. 石油与天然气地质, 2018, 39(2): 340-354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||