石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (5): 1102-1117.doi: 10.11743/ogg20230503
屈海洲1,2,3(), 郭新宇1,2, 徐伟4, 李文皓5, 唐松6, 邓雅霓7, 何仕鹏8, 张云峰1,2, 张兴宇4
收稿日期:
2023-02-26
修回日期:
2023-05-14
出版日期:
2023-10-19
发布日期:
2023-10-19
第一作者简介:
屈海洲(1987—),男,副教授,沉积学、石油与天然气地质学,E?mail: 基金项目:
Haizhou QU1,2,3(), Xinyu GUO1,2, Wei XU4, Wenhao LI5, Song TANG6, Yani DENG7, Shipeng HE8, Yunfeng ZHANG1,2, Xingyu ZHANG4
Received:
2023-02-26
Revised:
2023-05-14
Online:
2023-10-19
Published:
2023-10-19
摘要:
碳酸盐岩微孔隙(简称微孔)是孔径小于50 μm的微米-纳米级孔隙,目前有多种单因素和综合分类方案,以Kaczmarek的综合划分方案应用较为广泛,该方案将泥晶形态和物性相结合。微孔的表征方法主要有流体侵入法、图像分析法和数学统计法,并通过定性-定量组合实现对微孔的综合表征。微孔主要发育于泥晶-粉晶之间,原生沉积是微孔发育的基础,成岩作用是微孔形成的关键,重要的成岩作用包括矿物的转化作用、白云石化作用以及重结晶作用等。而泥晶体形态和排列方式决定微孔的空间几何结构,从而影响岩石的物理性质。随着对碳酸盐岩微孔认识的不断加深,需要进一步结合中国实例进行理论完善(包括微孔的分类、成因等),同时应用更先进的高精度微区测年、激光扫描共聚焦显微镜和数字岩心模型等表征技术,建立和完善微孔碳酸盐岩储层岩评价标准,以对中国大量发育的深层碳酸盐岩储层,尤其是其微观特征的研究提供理论和技术支撑。
中图分类号:
表1
中国碳酸盐岩微孔研究现状[21, 31-38]"
地区层位 | 沉积岩相 | 孔径范围 | 成因 |
---|---|---|---|
塔里木盆地顺南地区奥陶系一间房组 | 生物黏结灰岩、藻屑灰岩 | 10~20 μm到亚微米尺度 | 有机质演化与重结晶作用共同控制、热液流体改造、早期烃类充注 |
四川盆地川东地区二叠系茅口组 | 缓坡型碳酸盐岩台地环境,泥灰岩 | 1~1 000 nm | 海泡石发生脱水和硅质的析出,晶体体积变小;矿物颗粒内部溶蚀孔,主要为纳米级孔隙 |
塔里木盆地柯坪露头区震旦系 奇格布拉克组 | 微生物白云岩 | <10 μm | 微生物热解生酸溶蚀作用 |
塔里木顺南地区中-下奥陶系 | 藻灰岩、藻云岩、非生物 灰岩、白云岩 | <10 μm | 准同生期矿物转化、Ostwald熟化、热液溶蚀 |
羌塘盆地二叠系龙格组 | 微晶灰岩及生物屑灰岩、 白云岩 | 半径<20 μm | 白云石化作用、大气淡水溶蚀作用、压溶作用 |
四川盆地川西北地区二叠系栖霞组 | 泥晶颗粒云岩 | 7.3 μm | |
柴达木盆地英西地区古近系 干柴沟组(湖相) | 泥晶云岩 | 一般<1 μm | 白云石化作用,有机酸溶蚀;大气淡水选择性溶蚀 |
粤中地区三水盆地古近系 布心组(湖相) | 泥晶灰岩内部,部分生物灰岩 | 孔隙平均半径1.799 μm | 基质孔和少量溶蚀作用 |
鄂尔多斯盆地大牛地中奥陶统 马家沟组 | 泥晶-粉晶白云岩 | 粉晶白云岩中的晶间孔20~30 μm;而微晶白云岩中的晶间孔一般<10 μm | 白云石化作用 |
1 | HASHIM M S, KACZMAREK S E. A review of the nature and origin of limestone microporosity[J]. Marine and Petroleum Geology, 2019, 107: 527-554. |
2 | AL-AASM I S, AZMY K K. Diagenesis and evolution of microporosity of Middle-Upper Devonian Kee Scarp reefs, Norman wells, northwest territories, Canada: Petrographic and chemical evidence[J]. AAPG Bulletin, 1996, 80(1): 82-99. |
3 | MOORE C H. Carbonate diagenesis and porosity[M]. Amsterdam: Elsevier, 1989: 338. |
4 | MOSHIER S O. Microporosity in micritic limestones: A review[J]. Sedimentary Geology, 1989, 63(3/4): 191-213. |
5 | PERRI E, BORRELLI M, SPADAFORA A, et al. The role of microbialitic facies in the micro- and nano-pore system of dolomitized carbonate platforms (Upper Triassic-Southern Italy)[J]. Marine and Petroleum Geology, 2017, 88: 1-17. |
6 | WEI Duan, GAO Zhiqian, FAN Tailiang, et al. The rock-fabric/petrophysical characteristics and classification of the micropores hosted between the calcite and dolomite crystals[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107383. |
7 | SŁOWAKIEWICZ M, PERRI E, TUCKER M E. Micro- and nanopores in tight Zechstein 2 carbonate facies from the southern Permian Basin, NW Europe[J]. Journal of Petroleum Geology, 2016, 39(2): 149-168. |
8 | SKALINSKI M, KENTER J A M. Carbonate petrophysical rock typing: integrating geological attributes and petrophysical properties while linking with dynamic behaviour[J]. Geological Society, London, Special Publications, 2015, 406(1): 229-259. |
9 | TONIETTO S. Pore characterization and classification in carbonate reservoirs and the influence of diagenesis on the pore system. Case study: Thrombolite and grainstone units of the Upper Jurassic Smackover Formation, Gulf of Mexico[D]. College Station: Texas A & M University, 2014. |
10 | ARCHIE G E. Classification of carbonate reservoir rocks and petrophysical considerations[J]. AAPG Bulletin, 1952, 36(2): 278-298. |
11 | CHOQUETTE P W, PRAY L C. Geologic nomenclature and classification of porosity in sedimentary carbonates[J]. AAPG Bulletin, 1970, 54(2): 207-250. |
12 | PITTMAN E D. Microporosity in carbonate rocks: Geological notes[J]. AAPG Bulletin, 1971, 55(10): 1873-1878. |
13 | FULLMER S M, GUIDRY S A, GOURNAY J, et al. Microporosity: Characterization, distribution, and influence on oil recovery[C]//International Petroleum Technology Conference, Doha, 2014. Red Hook: Curran Associates, Inc., 2014: IPTC-17629-MS. |
14 | PEREIRA NUNES J P, BLUNT M J, BIJELJIC B. Pore-scale simulation of carbonate dissolution in micro-CT images[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 558-576. |
15 | 朱如凯, 吴松涛, 苏玲, 等. 中国致密储层孔隙结构表征需注意的问题及未来发展方向[J]. 石油学报, 2016, 37(11): 1323-1336. |
ZHU Rukai, WU Songtao, SU Ling, et al. Problems and future works of porous texture characterization of tight reservoirs in China[J]. Acta Petrolei Sinica, 2016, 37(11): 1323-1336. | |
16 | CANTRELL D L, HAGERTY R M. Microporosity in Arab Formation carbonates, Saudi Arabia[J]. GeoArabia, 1999, 4(2): 129-154. |
17 | DEVILLE DE PERIERE M, DURLET C, VENNIN E, et al. Morphometry of micrite particles in Cretaceous microporous limestones of the Middle East: Influence on reservoir properties[J]. Marine and Petroleum Geology, 2011, 28(9): 1727-1750. |
18 | HASIUK F J, KACZMAREK S E, FULLMER S M. Diagenetic origins of the calcite microcrystals that host microporosity in limestone reservoirs[J]. Journal of Sedimentary Research, 2016, 86(10): 1163-1178. |
19 | KACZMAREK S E, FULLMER S M, HASIUK F J. A universal classification scheme for the microcrystals that host limestone microporosity[J]. Journal of Sedimentary Research, 2015, 85(10): 1197-1212. |
20 | LOUCKS R G, LUCIA F J, WAITE L E. Origin and description of the micropore network within the Lower Cretaceous Stuart City trend tight-gas limestone reservoir in Pawnee Field in South Texas[J]. GCAGS Journal, 2013, 2: 29-41. |
21 | 卫端. 深层碳酸盐岩储层微观特征与成岩机理—以顺南地区中-下奥陶统为例[D]. 北京: 中国地质大学(北京), 2021. |
WEI Duan. Microscopic characteristics and diagenetic mechanisms of deep-burial carbonates: Taking the Middle Lower Ordovician in the Shunnan region as an example[D]. Beijing: China University of Geosciences(Beijing), 2021. | |
22 | 李云, 胡作维, 詹旗胜, 等. 浅海微孔泥晶碳酸盐岩储层研究进展[J]. 沉积学报, 2021, 39(6): 1580-1592. |
LI Yun, HU Zuowei, ZHAN Qisheng, et al. Research progress on shallow-sea microporous micritic carbonate reservoirs[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1580-1592. | |
23 | LØNØY A. Making sense of carbonate pore systems[J]. AAPG Bulletin, 2006, 90(9): 1381-1405. |
24 | FAŸ-GOMORD O, SOETE J, KATIKA K, et al. New insight into the microtexture of chalks from NMR analysis[J]. Marine and Petroleum Geology, 2016, 75: 252-271. |
25 | LAMBERT L, DURLET C, LOREAU J P, et al. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): Keys for recognition and timing[J]. Marine and Petroleum Geology, 2006, 23(1): 79-92. |
26 | LUCIA F J, LOUCKS R G. Micropores in carbonate mud: Early development and petrophysics[J]. GCAGS Journal, 2013, 2: 1-10. |
27 | VOLERY C, DAVAUD E, DURLET C, et al. Microporous and tight limestones in the Urgonian Formation (late Hauterivian to early Aptian) of the French Jura mountains: Focus on the factors controlling the formation of microporous facies[J]. Sedimentary Geology, 2010, 230(1/2): 21-34. |
28 | VOLERY C, DAVAUD E, FOUBERT A, et al. Shallow-marine microporous carbonate reservoir rocks in the Middle East: Relationship with seawater Mg/Ca ratio and eustatic sea level[J]. Journal of Petroleum Geology, 2009, 32(4): 313-325. |
29 | VOLERY C, DAVAUD E, FOUBERT A, et al. Lacustrine microporous micrites of the Madrid Basin (Late Miocene, Spain) as analogues for shallow-marine carbonates of the Mishrif reservoir Formation (Cenomanian to Early Turonian, Middle East)[J]. Facies, 2010, 56(3): 385-397. |
30 | 熊鹰, 伍坤宇, 谭秀成, 等. 湖平面升降对混积咸化湖盆碳酸盐岩储集层的控制: 以柴达木盆地英西地区古近系下干柴沟组上段为例[J]. 古地理学报, 2018, 20(5): 855-868. |
XIONG Ying, WU Kunyu, TAN Xiucheng, et al. Influence of lake-level fluctuation on the mixed saline lacustrine carbonate reservoir: A case study from the Upper Member of Paleogene Lower Ganchaigou Formation in the Yingxi area of Qaidam Basin[J]. Journal of Palaeogeography, 2018, 20(5): 855-868. | |
31 | 刘禹, 郑剑锋, 曾溅辉, 等. 塔里木盆地柯坪露头区震旦系微生物白云岩储层微观表征[J]. 天然气地球科学, 2022, 33(1): 49-62. |
LIU Yu, ZHENG Jianfeng, ZENG Jianhui, et al. Micro-characterization of microbial dolomite reservoir of Upper Sinian Qigeblak Formation in Keping area, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(1): 49-62. | |
32 | 尤东华, 韩俊, 胡文瑄, 等. 超深层灰岩孔隙-微孔隙特征与成因——以塔里木盆地顺南7井和顺托1井一间房组灰岩为例[J]. 石油与天然气地质, 2017, 38(4): 693-702. |
YOU Donghua, HAN Jun, HU Wenxuan, et al. Characteristics and genesis of pores and micro-pores in ultra-deep limestones: A case study of Yijianfang Formation limestones from Shunnan-7 and Shuntuo-1 wells in Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 693-702. | |
33 | 范建平, 宋金民, 江青春, 等. 川东地区中二叠统茅口组一段储层特征与形成模式[J]. 石油与天然气地质, 2022, 43(6): 1413-1430. |
FAN Jianping, SONG Jinmin, JIANG Qingchun, et al. Reservoir characteristics and development model of the Middle Permian Mao-1 Member in eastern Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(6): 1413-1430. | |
34 | 夏青松, 陆江, 杨鹏, 等. 柴达木盆地英西地区渐新统下干柴沟组上段储层微观孔隙结构特征[J]. 岩性油气藏, 2023, 35(1): 132-144. |
XIA Qingsong, LU Jiang, YANG Peng, et al. Microscopic pore structure characteristics of the upper member of Oligocene Xiaganchaigou Formation in Yingxi area, Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(1): 132-144. | |
35 | 唐鑫萍. 粤中地区三水盆地布心组湖相碳酸盐岩致密油储层特征[J]. 地球科学与环境学报, 2021, 43(4): 724-734. |
TANG Xinping. Characteristics of tight oil reservoir of lacustrine carbonate rocks of Buxin Formation in Sanshui Basin of central Guangdong area, China[J]. Journal of Earth Sciences and Environment, 2021, 43(4): 724-734. | |
36 | 丁晓琪, 刘鑫, 祁壮壮, 等. 碳酸盐岩孔洞型储层分层次储集空间表征——以鄂尔多斯盆地大牛地中奥陶统马家沟组马五7为例[J]. 石油实验地质, 2021, 43(4): 689-696. |
DING Xiaoqi, LIU Xin, QI Zhuangzhuang, et al. Reservoir space characterization of vuggy carbonate reservoirs with multiple scales: A case study of Ma 5-7 interval, Middle Ordovician Majiagou Formation, Daniudi area, Ordos Basin[J]. Petroleum Geology and Experiment, 2021, 43(4): 689-696. | |
37 | 李骞, 张钰祥, 李滔, 等. 基于数字岩心建立的评价碳酸盐岩完整孔喉结构的方法——以川西北栖霞组为例[J]. 油气地质与采收率, 2021, 28(3): 53-61. |
LI Qian, ZHANG Yuxiang, LI Tao, et al. A method for evaluating complete pore-throat structure of carbonate rocks based on digital cores: A case study of Qixia Formation in northwest Sichuan[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(3): 53-61. | |
38 | 张启燕, 刘晓, 史维鑫, 等. 基于微米CT和扫描电镜的碳酸盐岩微观结构特征分析[J]. 科学技术与工程, 2022, 22(34): 15043-15051. |
ZHANG Qiyan, LIU Xiao, SHI Weixin, et al. Analysis of carbonate rocks microstructure features based on micron CT and scanning electron microscopy[J]. Science Technology and Engineering, 2022, 22(34): 15043-15051. | |
39 | ABOUELRESH M O, MAHMOUD M, RADWAN A E, et al. Characterization and classification of the microporosity in the unconventional carbonate reservoirs: A case study from Hanifa Formation, Jafurah Basin, Saudi Arabia[J]. Marine and Petroleum Geology, 2022, 145: 105921. |
40 | JANJUHAH H T, ALANSARI A, GHOSH D P, et al. New approach towards the classification of microporosity in Miocene carbonate rocks, Central Luconia, offshore Sarawak, Malaysia[J]. Journal of Natural Gas Geoscience, 2018, 3(3): 119-133. |
41 | SMODEJ J, REUNING L, BECKER S, et al. Micro- and nano-pores in intrasalt, microbialite-dominated carbonate reservoirs, Ara Group, South-Oman salt basin[J]. Marine and Petroleum Geology, 2019, 104: 389-403. |
42 | 刘军, 陈强路, 王鹏, 等. 塔里木盆地顺南地区中下奥陶统碳酸盐岩储层特征与主控因素[J]. 石油实验地质, 2021, 43(1): 23-33. |
LIU Jun, CHEN Qianglu, WANG Peng, et al. Characteristics and main controlling factors of carbonate reservoirs of Middle-Lower Ordovician, Shunnan area, Tarim Basin[J]. Petroleum Geology and Experiment, 2021, 43(1): 23-33. | |
43 | 梁百和, 王英华, 黄志诚, 等. 泥晶灰岩的成岩作用与微孔隙研究[J]. 高校地质学报, 1996, 2(1): 92-99. |
LIANG Baihe, WANG Yinghua, HUANG Zhicheng, et al. The diagenesis and micropores of micrites[J]. Geological Journal of China Universities, 1996, 2(1): 92-99. | |
44 | WEI Duan, GAO Zhiqian, ZHANG Chi, et al. Characterization of the deeply buried microporous limestone: Case study from the Shunnan area, Tarim Basin, NW China[J]. Geological Journal, 2020, 55(7): 4920-4935. |
45 | BIJELJIC B, MOSTAGHIMI P, BLUNT M J. Insights into non-Fickian solute transport in carbonates[J]. Water Resources Research, 2013, 49(5): 2714-2728. |
46 | BORRELLI M, CAMPILONGO G, CRITELLI S, et al. 3D nanopores modeling using TEM-tomography (dolostones-Upper Triassic)[J]. Marine and Petroleum Geology, 2019, 99: 443-452. |
47 | BOSENCE D, GIBBONS K, LE HERON D P, et al. Microbial carbonates in space and time: Introduction[J]. Geological Society, London, Special Publications, 2015, 418(1): 1-15. |
48 | HE Jianhua, DING Wenlong, LI Ang, et al. Quantitative microporosity evaluation using mercury injection and digital image analysis in tight carbonate rocks: A case study from the Ordovician in the Tazhong Palaeouplift, Tarim Basin, NW China[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 627-644. |
49 | JOBE T D, GEIGER S, JIANG Z, et al. Micropore network modelling from 2D confocal imagery: Impact on reservoir quality and hydrocarbon recovery[J]. Petroleum Geoscience, 2018, 24(3): 323-334. |
50 | WANG Yingda, BLUNT M J, ARMSTRONG R T, et al. Deep learning in pore scale imaging and modeling[J]. Earth-Science Reviews, 2021, 215: 103555. |
51 | 胡文瑞, 鲍敬伟, 胡滨. 全球油气勘探进展与趋势[J]. 石油勘探与开发, 2013, 40(4): 409-413. |
HU Wenrui, BAO Jingwei, HU Bin. Trend and progress in global oil and gas exploration[J]. Petroleum Exploration and Development, 2013, 40(4): 409-413. | |
52 | 王晨晨, 姚军, 杨永飞, 等. 碳酸盐岩双孔隙数字岩心结构特征分析[J]. 中国石油大学学报(自然科学版), 2013, 37(2): 71-74. |
WANG Chenchen, YAO Jun, YANG Yongfei, et al. Structure characteristics analysis of carbonate dual pore digital rock[J]. Journal of China University of Petroleum(Edition of Natural Science), 2013, 37(2): 71-74. | |
53 | 邹才能, 张光亚, 陶士振, 等. 全球油气勘探领域地质特征、重大发现及非常规石油地质[J]. 石油勘探与开发, 2010, 37(2): 129-145. |
ZOU Caineng, ZHANG Guangya, TAO Shizhen, et al. Geological features, major discoveries and unconventional petroleum geology in the global petroleum exploration[J]. Petroleum Exploration and Development, 2010, 37(2): 129-145. | |
54 | KUROTORI T, ZAHASKY C, HOSSEINZADEH HEJAZI S A, et al. Measuring, imaging and modelling solute transport in a microporous limestone[J]. Chemical Engineering Science, 2019, 196: 366-383. |
55 | HASSAN A, CHANDRA V, YUTKIN M P, et al. Imaging and characterization of microporous carbonates using confocal and electron microscopy of epoxy pore casts[J]. SPE Journal, 2019, 24(3): 1220-1233. |
56 | 张世铭, 王建功, 张永庶, 等. 柴达木盆地西部地区下干柴沟组湖相白云岩晶间孔型储层物性下限的确定[J]. 石油学报, 2021, 42(1): 45-55, 118. |
ZHANG Shiming, WANG Jiangong, ZHANG Yongshu, et al. Determination of petrophysical property cutoffs of lacustrine dolomite intercrystalline pore reservoir in the Xiaganchaigou Formation, western Qaidam Basin[J]. Acta Petrolei Sinica, 2021, 42(1): 45-55, 118. | |
57 | 赵习, 刘波, 郭荣涛, 等. 储层表征技术及应用进展[J]. 石油实验地质, 2017, 39(2): 287-294. |
ZHAO Xi, LIU Bo, GUO Rongtao, et al. Reservoir characterization and its application to development[J]. Petroleum Geology and Experiment, 2017, 39(2): 287-294. | |
58 | 宁传祥, 姜振学, 高之业, 等. 用核磁共振和高压压汞定量评价储层孔隙连通性——以沾化凹陷沙三下亚段为例[J]. 中国矿业大学学报, 2017, 46(3): 578-585. |
NING Chuanxiang, JIANG Zhenxue, GAO Zhiye, et al. Quantitative evaluation of pore connectivity with nuclear magnetic resonance and high pressure mercury injection: A case study of the lower section of Es3 in Zhanhua Sag[J]. Journal of China University of Mining & Technology, 2017, 46(3): 578-585. | |
59 | KALLEL W, VAN DIJKE M I J, SORBIE K S, et al. Modelling the effect of wettability distributions on oil recovery from microporous carbonate reservoirs[J]. Advances in Water Resources, 2016, 95: 317-328. |
60 | 孙亮, 王晓琦, 金旭, 等. 微纳米孔隙空间三维表征与连通性定量分析[J]. 石油勘探与开发, 2016, 43(3): 490-498. |
SUN Liang, WANG Xiaoqi, JIN Xu, et al. Three dimensional characterization and quantitative connectivity analysis of micro/nano pore space[J]. Petroleum Exploration and Development, 2016, 43(3): 490-498. | |
61 | REGNET J B, DAVID C, ROBION P, et al. Microstructures and physical properties in carbonate rocks: A comprehensive review[J]. Marine and Petroleum Geology, 2019, 103: 366-376. |
62 | CARPENTER S J, LOHMANN K C, HOLDEN P, et al. δ18O values, 87Sr86Sr and Sr/Mg ratios of Late Devonian abiotic marine calcite: Implications for the composition of ancient seawater[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1991-2010. |
63 | GANNON M E, PÉREZ-HUERTA A, AHARON P, et al. A biomineralization study of the Indo-Pacific giant clam Tridacna gigas [J]. Coral Reefs, 2017, 36(2): 503-517. |
64 | LASEMI Z, SANDBERG P. Microfabric and compositional clues to dominant mud mineralogy of micrite precursors[M]//REZAK R, LAVOIE D L. Carbonate Microfabrics. New York: Springer, 1993: 173-185. |
65 | MOSHIER S O. Development of microporosity in a micritic limestone reservoir, Lower Cretaceous, Middle East[J]. Sedimentary Geology, 1989, 63(3/4): 217-240. |
66 | SCHOLLE P A, ULMER-SCHOLLE D S. A color guide to the petrography of carbonate rocks: Grains, textures, porosity, diagenesis[M]. Tulsa: American Association of Petroleum Geologists, 2003: 1-486. |
67 | CARPENTIER C, FERRY S, LÉCUYER C, et al. Origin of micropores in Late Jurassic (Oxfordian) micrites of the eastern Paris Basin, France[J]. Journal of Sedimentary Research, 2015, 85(6): 660-682. |
68 | 叶德胜. 塔里木盆地北部上丘里塔格群致密灰岩微孔储层的发现及意义[J]. 石油实验地质, 1993, 15(2): 174-184. |
YE Desheng. The discovery of compacted limestone microporous reservoir in the Upper Qiulitage Group, the northern Tarim Basin and its significance[J]. Petroleum Geology and Experiment, 1993, 15(2): 174-184. | |
69 | FABRICIUS I L. Chalk: Composition, diagenesis and physical properties[J]. Bulletin of the Geological Society of Denmark, 2009, 55: 97-128. |
70 | DICKSON J A D, KENTER J A M. Diagenetic evolution of selected parasequences across a carbonate platform: Late Paleozoic, Tengiz reservoir, Kazakhstan[J]. Journal of Sedimentary Research, 2014, 84(8): 664-693. |
71 | JERRY LUCIA F. Observations on the origin of micrite crystals[J]. Marine and Petroleum Geology, 2017, 86: 823-833. |
72 | LASEMI Z, SANDBERG P A. Transformation of aragonite-dominated lime muds to microcrystalline limestones[J]. Geology, 1984, 12(7): 420-423. |
73 | BUDD D A. Micro-rhombic calcite and microporosity in limestones: A geochemical study of the Lower Cretaceous Thamama Group, U.A.E[J]. Sedimentary Geology, 1989, 63(3/4): 293-311. |
74 | BUDD D A. Dissolution of high-Mg calcite fossils and the formation of biomolds during mineralogical stabilization[J]. Carbonates and Evaporites, 1992, 7(1): 74-81. |
75 | SALLER A H, MOORE C H. Meteoric diagenesis, marine diagenesis, and microporosity in Pleistocene and Oligocene limestones, Enewetak Atoll, Marshall Islands[J]. Sedimentary Geology, 1989, 63(3/4): 253-272. |
76 | 徐亮. 东营凹陷碳酸盐岩白云石化储层孔隙形成机理研究[J]. 矿物岩石地球化学通报, 2013, 32(4): 463-467. |
XU Liang. Effects of dolomitization in carbonate rocks on reservoir porosity in the Dongying Depression[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(4): 463-467. | |
77 | MUNNECKE A, WESTPHAL H, REIJMER J J G, et al. Microspar development during early marine burial diagenesis: A comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden)[J]. Sedimentology, 1997, 44(6): 977-990. |
78 | PAPENGUTH H W. Experimental diagenesis of lime mud[D]. Urbana: University of Illinois at Urbana-Champaign, 1991. |
79 | WALTER L M. The dissolution kinetics of shallow water carbonate grain types: Effects of mineralogy, microstructure, and solution chemistry (magnesium-calcite)[D]. Coral Gables: University of Miami, 1983. |
80 | WALTER L M, MORSE J W. The dissolution kinetics of shallow marine carbonates in seawater: A laboratory study[J]. Geochimica et Cosmochimica Acta, 1985, 49(7): 1503-1513. |
81 | MORSE J W, MACKENZIE F T. Geochemical constraints on CaCO3 transport in subsurface sedimentary environments[J]. Chemical Geology, 1993, 105(1/3): 181-196. |
82 | GISCHLER E, ZINGELER D. The origin of carbonate mud in isolated carbonate platforms of Belize, Central America[J]. International Journal of Earth Sciences, 2002, 91(6): 1054-1070. |
83 | REIJMER J J G, ANDRESEN N. Mineralogy and grain size variations along two carbonate margin-to-basin transects (Pedro Bank, Northern Nicaragua Rise)[J]. Sedimentary Geology, 2007, 198(3/4): 327-350. |
84 | TURPIN M, EMMANUEL L, RENARD M. Nature and origin of carbonate particles along a transect on the western margin of Great Bahama Bank (Middle Miocene): Sedimentary processes and depositional model[J]. Bulletin de la Société Géologique de France, 2008, 179(3): 231-244. |
85 | MOSHIER S O. On the nature and origin of microporosity in micritic limestones[D]. Baton Rouge: Louisiana State University, 1987. |
86 | 李峰峰, 郭睿, 余义常, 等. 伊拉克M油田白垩系Mishrif组沉积特征及控储机理[J]. 沉积学报, 2020, 38(5): 1076-1087. |
LI Fengfeng, GUO Rui, YU Yichang, et al. Sedimentary characteristics and control in reservoirs in the Cretaceous Mishrif Formation, M Oilfield, Iraq[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1076-1087. | |
87 | 张萌, 乔占峰, 高计县, 等. 伊拉克哈法亚油田Mishrif组MB1-2亚段局限台地碳酸盐岩储层特征及评价[J]. 东北石油大学学报, 2020, 44(5): 35-45, 7. |
ZHANG Meng, QIAO Zhanfeng, GAO Jixian, et al. Characteristics and evaluation of carbonate reservoirs in restricted platform in the MB1-2 sub-member of Mishrif Formation, Halfaya Oilfield, Iraq[J]. Journal of Northeast Petroleum University, 2020, 44(5): 35-45, 7. | |
88 | REGNET J B, ROBION P, DAVID C, et al. Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(2): 790-811. |
89 | BATHURST R G C. Developments in sedimentology 12: Carbonate sediments and their diagenesis[M]. 2nd ed. Amsterdam: Elsevier, 1975: 1-620. |
90 | STEINEN R P. On the diagenesis of lime mud; scanning electron microscopic observations of subsurface material from Barbados, W.I.[J]. Journal of Sedimentary Research, 1978, 48(4): 1139-1148. |
91 | STEINEN R P. SEM observations on the replacement of Bahaman aragonitic mud by calcite[J]. Geology, 1982, 10(9): 471-475. |
92 | ARRIBAS M E, BUSTILLO A, TSIGE M. Lacustrine chalky carbonates: Origin, physical properties and diagenesis (Palaeogene of the Madrid Basin, Spain)[J]. Sedimentary Geology, 2004, 166(3/4): 335-351. |
93 | WRIGHT V P, ZARZA A M A, SANZ M E, et al. Diagenesis of Late Miocene micritic lacustrine carbonates, Madrid Basin, Spain[J]. Sedimentary Geology, 1997, 114(1/4): 81-95. |
94 | BATHURST R G C. Diagenetic fabrics in some British Dinantian limestones[J]. Geological Journal, 1961, 2(1): 11-36. |
95 | FOLK R L. Some aspects of recrystallization of ancient limestones: Abstract[J]. AAPG Bulletin, 1965, 48(4): 525. |
96 | MORSE J W, CASEY W H. Ostwald processes and mineral paragenesis in sediments[J]. American Journal of Science, 1988, 288(6): 537-560. |
97 | LAND L S, MACKENZIE F T, GOULD S J. Pleistocene history of Bermuda[J]. GSA Bulletin, 1967, 78(8): 993-1006. |
98 | MELIM L A, WESTPHAL H, SWART P K, et al. Questioning carbonate diagenetic paradigms: Evidence from the Neogene of the Bahamas[J]. Marine Geology, 2002, 185(1/2): 27-53. |
99 | 黄思静, 张雪花, 刘丽红, 等. 碳酸盐成岩作用研究现状与前瞻[J]. 地学前缘, 2009, 16(5): 219-231. |
HUANG Sijing, ZHANG Xuehua, LIU Lihong, et al. Progress of research on carbonate diagenesis[J]. Earth Science Frontiers, 2009, 16(5): 219-231. | |
100 | 黄成刚, 袁剑英, 吴梁宇, 等. 湖相白云岩成因模式及研究方法探讨[J]. 岩性油气藏, 2016, 28(2): 7-15. |
HUANG Chenggang, YUAN Jianying, WU Liangyu, et al. Origin and research methods of lacustrine dolomite[J]. Lithologic Reservoirs, 2016, 28(2): 7-15. | |
101 | 黄成刚, 倪祥龙, 马新民, 等. 致密湖相碳酸盐岩油气富集模式及稳产、高产主控因素——以柴达木盆地英西地区为例[J]. 西北大学学报(自然科学版), 2017, 47(5): 724-738. |
HUANG Chenggang, NI Xianglong, MA Xinmin, et al. Petroleum and gas enrichment pattern and major controlling factors of stable and high production of tight lacustrine carbonate rock reservoirs: A case of the Yingxi area in Qaidam Basin[J]. Journal of Northwest University(Natural Science Edition), 2017, 47(5): 724-738. | |
102 | 刘耘. 柴达木盆地英西地区E3 2混积湖相碳酸盐岩储层特征及成因机理研究[D]. 成都: 西南石油大学, 2019. |
LIU Yun. Characteristics and genetic mechanism of mixed lacustrine carbonate reservoir in the E3 2 Formation, Yingxi area of Qaidam Basin[D]. Chengdu: Southwest Petroleum University, 2019. | |
103 | 张庆辉, 张磊, 吴克柳, 等. 基于核磁共振的湖相致密储层储集空间类型特征及开发潜力评价: 以柴达木盆地英西地区为例[J]. 中南大学学报(自然科学版), 2021, 52(2): 498-508. |
ZHANG Qinghui, ZHANG Lei, WU Keliu, et al. Reservoir space characteristics and development potential evaluation by NMR in lacustrine tight reservoirs: A case study of Yingxi area of Qaidam Basin[J]. Journal of Central South University(Science and Technology), 2021, 52(2): 498-508. | |
104 | 史德锋, 李潇雨, 王亚辉, 等. 中国南海西沙地区西科1井中新统白云岩中微生物特征及其对白云石化的启示[J]. 矿物岩石, 2020, 40(2): 104-113. |
SHI Defeng, LI Xiaoyu, WANG Yahui, et al. Microbial characteristics of Miocene dolomite in Well Xike-1, Xisha area, South China Sea: Implications for dolomitization[J]. Journal of Mineralogy and Petrology, 2020, 40(2): 104-113. | |
105 | AHR W M. Early diagenetic microporosity in the Cotton Valley Limestone of east Texas[J]. Sedimentary Geology, 1989, 63(3/4): 275-292. |
106 | BATHURST R G C. Boring algae, micrite envelopes and lithification of molluscan biosparites[J]. Geological Journal, 1966, 5(1): 15-32. |
107 | HOVER V C, WALTER L M, PEACOR D R. Early marine diagenesis of biogenic aragonite and Mg-calcite: New constraints from high-resolution STEM and AEM analyses of modern platform carbonates[J]. Chemical Geology, 2001, 175(3/4): 221-248. |
108 | PURDY E G. Carbonate diagenesis: An environmental survey[J]. Geologica Romana, 1968, 7: 183-228. |
109 | REID R P, MACINTYRE I G. Carbonate recrystallization in shallow marine environments: A widespread diagenetic process forming micritized grains[J]. Journal of Sedimentary Research, 1998, 68(5): 928-946. |
110 | REID R P, MACINTYRE I G. Microboring versus recrystallization: Further insight into the micritization process[J]. Journal of Sedimentary Research, 2000, 70(1): 24-28. |
111 | ALEXANDERSSON T. Intragranular growth of marine aragonite and Mg-calcite; evidence of precipitation from supersaturated seawater[J]. Journal of Sedimentary Research, 1972, 42(2): 441-460. |
112 | 何治亮, 马永生, 朱东亚, 等. 深层-超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质, 2021, 42(3): 533-546. |
HE Zhiliang, MA Yongsheng, ZHU Dongya, et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2021, 42(3): 533-546. | |
113 | 何治亮, 张军涛, 丁茜, 等. 深层-超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质, 2017, 38(4): 633-644, 763. |
HE Zhiliang, ZHANG Juntao, DING Qian, et al. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2017, 38(4): 633-644, 763. | |
114 | 马永生, 何治亮, 赵培荣, 等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425. |
MA Yongsheng, HE Zhiliang, ZHAO Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425. | |
115 | ANSELMETTI F S, LUTHI S, EBERLI G P. Quantitative characterization of carbonate pore systems by digital image analysis[J]. AAPG Bulletin, 1998, 82(10): 1815-1836. |
116 | 胡安平, 沈安江, 杨翰轩, 等. 碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合[J]. 石油勘探与开发, 2019, 46(5): 916-928. |
HU Anping, SHEN Anjiang, YANG Hanxuan, et al. Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system[J]. Petroleum Exploration and Development, 2019, 46(5): 916-928. | |
117 | 佘敏, 胡安平, 王鑫, 等. 湖湘叠层石生排烃模拟及微生物碳酸盐岩生烃潜力[J]. 中国石油大学学报(自然科学版), 2019, 43(1): 12-22. |
SHE Min, HU Anping, WANG Xin, et al. Thermocompression simulation of hydrocarbon generation and expulsion for lacustrine stromatolite and hydrocarbon generation potential of microbial carbonates[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(1): 12-22. | |
118 | 佘敏, 王鑫, 陈薇. 微生物碳酸盐岩生烃生酸模拟及其地质意义[J]. 地质论评, 2019, 65(S1): 136-138. |
SHE Min, WANG Xin, CHEN Wei. Thermocompression simulation of hydrocarbon and organic acid generation of microbial carbonates and its significance[J]. Geological Review, 2019, 65(S1): 136-138. | |
119 | CHAFETZ H S. Porosity in bacterially induced carbonates: Focus on micropores[J]. AAPG Bulletin, 2013, 97(11): 2103-2111. |
120 | 屈海洲, 周子坤, 张云峰, 等. 微生物碳酸盐岩孔隙研究进展[J]. 沉积学报, 2018, 36(4): 651-663. |
QU Haizhou, ZHOU Zikun, ZHANG Yunfeng, et al. Research progress of porosity in microbial carbonates[J]. Acta Sedimentologica Sinica, 2018, 36(4): 651-663. | |
121 | MAZZULLO S J, HARRIS P M. Mesogenetic dissolution: Its role in porosity development in carbonate reservoirs[J]. AAPG Bulletin, 1992, 76(5): 607-620. |
122 | 钱一雄, 武恒志, 周凌方, 等. 深埋条件下微生物碳酸盐岩成岩作用与孔隙演化——以四川盆地西部中三叠统雷口坡组为例[J]. 石油与天然气地质, 2023, 44(1): 55-74. |
QIAN Yixiong, WU Hengzhi, ZHOU Lingfang, et al. Diagenesis and porosity evolution of microbial carbonate rocks undergone a deep burial history: Taking the Leikoupo Formation of Middle Triassic in western Sichuan Basin as an example[J]. Oil & Gas Geology, 2023, 44(1): 55-74. | |
123 | DRAVIS J J. Deep-burial microporosity in Upper Jurassic Haynesville oolitic grainstones, East Texas[J]. Sedimentary Geology, 1989, 63(3/4): 325-341. |
124 | 寿建峰, 佘敏, 沈安江. 深层条件下碳酸盐岩溶蚀改造效应的模拟实验研究[J]. 矿物岩石地球化学通报, 2016, 35(5): 860-867, 806. |
SHOU Jianfeng, SHE Min, SHEN Anjiang. Experimental simulation of dissolution effect of carbonate rock under deep burial condition[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(5): 860-867, 806. | |
125 | 李继岩, 王永诗, 刘传虎, 等. 热液流体活动及其对碳酸盐岩储集层改造定量评价——以渤海湾盆地东营凹陷西部下古生界为例[J]. 石油勘探与开发, 2016, 43(3): 359-366. |
LI Jiyan, WANG Yongshi, LIU Chuanhu, et al. Hydrothermal fluid activity and the quantitative evaluation of its impact on carbonate reservoirs: A case study of the Lower Paleozoic in the west of Dongying Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2016, 43(3): 359-366. | |
126 | 熊鹰, 谭秀成, 伍坤宇, 等. 碳酸盐岩储集层成岩作用中 “孔隙尺寸控制沉淀”研究进展、地质意义及鄂尔多斯盆地实例[J]. 古地理学报, 2020, 22(4): 744-760. |
XIONG Ying, TAN Xiucheng, WU Kunyu, et al. Research advances, geological implication and application in Ordos Basin of the “pore-size controlled precipitation” in diagenesis of carbonate rock reservoir[J]. Journal of Palaeogeography, 2020, 22(4): 744-760. | |
127 | MOORE C H, WADE W J. Carbonate reservoirs: Porosity and diagenesis in a sequence stratigraphic framework[M]. 2nd ed. Burlington: Elsevier, 2013: 374. |
128 | CLERKE E A, MUELLER H W III, PHILLIPS E C, et al. Application of Thomeer Hyperbolas to decode the pore systems, facies and reservoir properties of the Upper Jurassic Arab D Limestone, Ghawar Field, Saudi Arabia: A “Rosetta Stone” approach[J]. GeoArabia, 2008, 13(4): 113-160. |
129 | CLERKE E A. Permeability, relative permeability, microscopic displacement efficiency and pore geometry of M_1 bimodal pore systems in Arab D limestone[J]. SPE Journal, 2009, 14(3): 524-531. |
130 | 柳青兵, 蔡忠贤, 薛玉芳, 等. 塔里木盆地柯坪周缘地区肖尔布拉克组白云岩孔隙结构全孔径表征[J]. 科学技术与工程, 2022, 22(13): 5213-5221. |
LIU Qingbing, CAI Zhongxian, XUE Yufang, et al. Full pore size characterization of dolomite pore structure of Xiaolbulake Formation in the peripheral area of Keping, Tarim Basin[J]. Science Technology and Engineering, 2022, 22(13): 5213-5221. | |
131 | 黄成刚, 王建功, 吴丽荣, 等. 古近系湖相碳酸盐岩储集特征与含油性分析——以柴达木盆地英西地区为例[J]. 中国矿业大学学报, 2017, 46(5): 1102-1115. |
HUANG Chenggang, WANG Jiangong, WU Lirong, et al. Characteristics of Paleogene lacustrine carbonate reservoirs and oil-bearing property analysis: A case study of the Yingxi area of western Qaidam Basin[J]. Journal of China University of Mining & Technology, 2017, 46(5): 1102-1115. | |
132 | Anions; Report summarizes anions study findings from university of bristol (micro- and nanopores in tight zechstein 2 carbonate facies from the southern Permian Basin, NW europe)[J]. Energy Weekly News, 2016. |
133 | 张洪, 张水昌, 柳少波, 等. 致密油充注孔喉下限的理论探讨及实例分析[J]. 石油勘探与开发, 2014, 41(3): 367-374. |
ZHANG Hong, ZHANG Shuichang, LIU Shaobo, et al. A theoretical discussion and case study on the oil-charging throat threshold for tight reservoirs[J]. Petroleum Exploration and Development, 2014, 41(3): 367-374. | |
134 | LUCIA F J. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization[J]. AAPG Bulletin, 1995, 79(9): 1275-1300. |
135 | 邹才能, 杨智, 陶士振, 等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发, 2012, 39(1): 13-26. |
ZOU Caineng, YANG Zhi, TAO Shizhen, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-26. | |
136 | 王拥军, 孙圆辉, 杨思玉, 等. 中东东鲁卜哈利盆地碳酸盐岩微孔型低电阻率油层饱和度评价方法[J]. 石油勘探与开发, 2022, 49(1): 81-92. |
WANG Yongjun, SUN Yuanhui, YANG Siyu, et al. Saturation evaluation of microporous low resistivity carbonate oil pays in Rub Al Khali Basin in the Middle East[J]. Petroleum Exploration and Development, 2022, 49(1): 81-92. | |
137 | BAECHLE G T, COLPAERT A, EBERLI G P, et al. Effects of microporosity on sonic velocity in carbonate rocks[J]. The Leading Edge, 2008, 27(8): 1012-1018. |
138 | 路保平, 王志战, 张元春. 碳酸盐岩孔隙压力预监测理论与方法进展[J]. 石油学报, 2022, 43(4): 571-580. |
LU Baoping, WANG Zhizhan, ZHANG Yuanchun. Progress of theories and methods for prediction and detection of pore pressure in carbonate rock[J]. Acta Petrolei Sinica, 2022, 43(4): 571-580. | |
139 | 余夫, 金衍, 陈勉, 等. 异常高压地层的纵波速度响应特征分析[J]. 石油钻探技术, 2014, 42(2): 23-27. |
YU Fu, JIN Yan, CHEN Mian, et al. Analysis of response characteristic of P-wave velocity in abnormal over-pressure formation[J]. Petroleum Drilling Techniques, 2014, 42(2): 23-27. | |
140 | 王玉伟, 陈红汉, 曹自成, 等. 塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价[J]. 地球科学, 2019, 44(2): 559-571. |
WANG Yuwei, CHEN Honghan, CAO Zicheng, et al. Forming mechanism of Ordovician microbial carbonate reservoir in northern slope of Tazhong uplift, Tarim Basin[J]. Earth Science, 2019, 44(2): 559-571. | |
141 | 何治亮, 赵向原, 张文彪, 等. 深层-超深层碳酸盐岩储层精细地质建模技术进展与攻关方向[J]. 石油与天然气地质, 2023, 44(1): 16-33. |
HE Zhiliang, ZHAO Xiangyuan, ZHANG Wenbiao, et al. Progress and direction of geological modeling for deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2023, 44(1): 16-33. | |
142 | EICHMANN S, BOUCHARD J, OW H, et al. Terahertz imaging to map the microporosity distribution in carbonate rocks[J]. Microscopy and Microanalysis, 2021, 27(S1): 2746-2748. |
143 | HURLEY N F, NAKAMURA K, ROSENBERG H. Microporosity quantification using confocal microscopy[J]. Journal of Sedimentary Research, 2021, 91(7): 735-750. |
144 | 李文浩, 卢双舫, 王民, 等. 基于扫描电镜大视域拼接技术定量表征致密储层微观非均质性[J]. 石油与天然气地质, 2022, 43(6): 1497-1504. |
LI Wenhao, LU Shuangfang, WANG Min, et al. Quantitative characterization of micro heterogeneity of tight reservoirs by large-view FE-SEM splicing technology[J]. Oil & Gas Geology, 2022, 43(6): 1497-1504. | |
145 | 吴康军, 刘洛夫, 徐正建, 等. 鄂尔多斯盆地长7段致密油成藏物性下限研究[J]. 石油实验地质, 2016, 38(1): 63-69. |
WU Kangjun, LIU Luofu, XU Zhengjian, et al. Lower limits of pore throat radius, porosity and permeability for tight oil accumulations in the Chang 7 Member, Ordos Basin[J]. Petroleum Geology and Experiment, 2016, 38(1): 63-69. | |
146 | 付金华, 罗安湘, 张妮妮, 等. 鄂尔多斯盆地长7油层组有效储层物性下限的确定[J]. 中国石油勘探, 2014, 19(6): 82-88. |
FU Jinhua, LUO Anxiang, ZHANG Nini, et al. Determine lower limits of physical properties of effective reservoirs in Chang 7 oil formation in Ordos Basin[J]. China Petroleum Exploration, 2014, 19(6): 82-88. | |
147 | 刘晓鹏, 刘新社, 赵会涛, 等. 一种计算致密砂岩油气藏有效孔喉下限的新方法——以苏里格气田盒8气藏为例[J]. 新疆石油地质, 2016, 37(3): 360-364. |
LIU Xiaopeng, LIU Xinshe, ZHAO Huitao, et al. A new method to calculate the lower limit of effective pore throat threshold of tight sandstone reservoirs: A case study of He-8 gas reservoir in Sulige Gas Field[J]. Xinjiang Petroleum Geology, 2016, 37(3): 360-364. | |
148 | 公言杰, 柳少波, 方世虎, 等. 四川盆地侏罗系致密油聚集孔喉半径下限研究[J]. 深圳大学学报(理工版), 2014, 31(1): 103-110. |
GONG Yanjie, LIU Shaobo, FANG Shihu, et al. Radius threshold of pore throat for tight oil accumulation[J]. Journal of Shenzhen University(Science & Engineering), 2014, 31(1): 103-110. | |
149 | 王攀荣, 王磊, 周振宇, 等. 致密储层气体滑脱效应研究[J]. 海洋石油, 2020, 40(2): 34-38, 43. |
WANG Panrong, WANG Lei, ZHOU Zhenyu, et al. Research on gas slippage effect in tight reservoir[J]. Offshore Oil, 2020, 40(2): 34-38, 43. |
[1] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[2] | 潘虹, 于庆森, 李晓山, 宋俊强, 蒋志斌, 王丽, 罗官幸, 徐文秀, 尤浩宇. 准噶尔盆地红车断裂带石炭系重新认识及油气成藏特征[J]. 石油与天然气地质, 2024, 45(1): 215-230. |
[3] | 侯读杰, 吴克强, 尤丽, 张自鸣, 李雅君, 熊小峰, 徐敏, 严夏泽, 陈威合, 程熊. 琼东南盆地陆源海相烃源岩有机质富集机理[J]. 石油与天然气地质, 2024, 45(1): 31-43. |
[4] | 远光辉, 彭光荣, 张丽丽, 孙辉, 陈淑慧, 刘浩, 赵晓阳. 珠江口盆地白云凹陷古近系深层高变温背景下储层成岩作用与低渗致密化机制[J]. 石油与天然气地质, 2024, 45(1): 44-64. |
[5] | 刘佳庚, 王艳忠, 操应长, 王淑萍, 李雪哲, 王铸坤. 渤海湾盆地东营凹陷民丰洼陷陡坡带深层-超深层碎屑岩优质储层控制因素[J]. 石油与天然气地质, 2023, 44(5): 1203-1217. |
[6] | 王鑫, 曾溅辉, 贾昆昆, 王伟庆, 李博, 安丛, 赵文. 成岩作用控制下低渗透砂岩润湿性演化过程及机制[J]. 石油与天然气地质, 2023, 44(5): 1308-1320. |
[7] | 王宏博, 马存飞, 曹铮, 李志鹏, 韩长城, 纪文明, 杨艺. 基于岩相的致密砂岩差异成岩作用及其储层物性响应[J]. 石油与天然气地质, 2023, 44(4): 976-992. |
[8] | 李东伟, 龚承林, 胡林, 何小胡, 罗泉源. 深水水道沉积内幕级次划分与精细刻画[J]. 石油与天然气地质, 2023, 44(3): 553-564. |
[9] | 王濡岳, 胡宗全, 赖富强, 刘粤蛟, 邬忠虎, 何建华, 邹冠贵, 王鹏威, 李治昊. 川东北地区下侏罗统自流井组大安寨段陆相页岩脆性特征及其控制因素[J]. 石油与天然气地质, 2023, 44(2): 366-378. |
[10] | 何治亮, 赵向原, 张文彪, 吕心瑞, 朱东亚, 赵峦啸, 胡松, 郑文波, 刘彦锋, 丁茜, 段太忠, 胡向阳, 孙建芳, 耿建华. 深层-超深层碳酸盐岩储层精细地质建模技术进展与攻关方向[J]. 石油与天然气地质, 2023, 44(1): 16-33. |
[11] | 丁茜, 王静彬, 杨磊磊, 朱东亚, 江文滨, 何治亮. 基于模拟实验探讨断裂-流体-岩石体系中的矿物溶解-沉淀过程[J]. 石油与天然气地质, 2023, 44(1): 164-177. |
[12] | 赵向原, 游瑜春, 胡向阳, 黎静容, 李毓. 基于成因机理及主控因素约束的多尺度裂缝“分级-分期-分组”建模方法[J]. 石油与天然气地质, 2023, 44(1): 213-225. |
[13] | 吕心瑞, 邬兴威, 孙建芳, 夏东领, 李彦普, 丁炎志, 王斌. 深层碳酸盐岩储层溶洞垮塌物理模拟及分布预测[J]. 石油与天然气地质, 2022, 43(6): 1505-1514. |
[14] | 郑和荣, 田景春, 胡宗全, 张翔, 赵永强, 孟万斌. 塔里木盆地奥陶系岩相古地理演化及沉积模式[J]. 石油与天然气地质, 2022, 43(4): 733-745. |
[15] | 向芳, 肖倩, 喻显涛, 黄恒旭, 朱祥. 四川盆地元坝地区上二叠统海相凝灰沉积储层特征[J]. 石油与天然气地质, 2022, 43(4): 889-901. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||