石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (1): 28-40.doi: 10.11743/ogg20210103
张金川1,2(), 刘树根3, 魏晓亮1,2,4, 唐玄1,2, 刘飏1,2
收稿日期:
2020-08-17
出版日期:
2021-02-28
发布日期:
2021-02-07
第一作者简介:
张金川(1964-), 男, 博士、教授、博士生导师, 非常规油气地质。E-mail: 基金项目:
Jinchuan Zhang1,2(), Shugen Liu3, Xiaoliang Wei1,2,4, Xuan Tang1,2, Yang Liu1,2
Received:
2020-08-17
Online:
2021-02-28
Published:
2021-02-07
摘要:
作为页岩气资源勘探评价的核心基础,含气量的评价一直作为关键研究内容而受到高度关注。页岩气的成藏和富集是一个动态地质过程,游离和吸附状态天然气的同时存在及比例变化,导致了页岩中天然气赋存状态的复杂性。页岩含气机理与煤层气差异较大,直接和间接成因的页岩气类型各具不同的页岩油气形成条件和含气特点。垂向上的页岩含气相关指征曲线变化特点,可提供更多的沉积、含气及保存等信息。页岩含气量的获得方法可划分为6种基本类型,归属于3个可信度梯度级别,其中的现场解析法是含气量获取方法中的重要方法。在现场解析的升温过程中,只有当岩心在加热至地层温度前见解吸气者,通过线性或多项式逆向回归法计算出来的损失气量才具有明确物理意义。页岩的含气量受页岩的生气能力和强度控制,损失气、解吸气及残余气分别与吸附气和游离气存在内在联系。页岩吸附含气量和总含气量是页岩含气量地质评价中的重要参数,页岩气中游离气的占比不仅能反映页岩中天然气的赋存状态,而且更指示了页岩气的可采性。同时满足总含气量和游吸比双高目标的评价对象,是页岩气的有利目标。含气量、游吸比及可采系数等含气结构参数的同时使用,有助于更准确地进行页岩气评价。机器学习和大数据分析等提高了数据处理工作效率,智能评价是页岩含气量评价研究未来发展的重要方向。
中图分类号:
表2
页岩含气量评价主要方法"
方法 | 基本原理 | 方法要点 | 适用条件 | 结果可信度 | |
地震处理 | 烃类检测 | 当页岩地层含气时,相关的地震参数将发生对应响应 | 提取页岩层段的速度、频率、振幅、相位等参数,发现变化异常 | 需要有一定的测网密度和覆盖次数,有钻井资料验证 | 预测结果取决于数据采集和处理质量,受地质条件和地震解释影响较大 |
钻录测井(井筒技术) | 气测异常 | 对钻井泥浆进行脱气处理,检测其中的气体类型和数量 | 减少钻井和泥浆的干扰,在相同条件下进行脱气检测 | 钻井过程中通过录井仪实现,适用范围广 | 具有重要参考价值,但受泥浆、钻井过程等影响较大 |
测井计算 | 依据不同类型的测井曲线,建立计算关系模型,解释计算页岩地层含气量 | 按沉积类型不同,分别建立不同层系、不同类型页岩地层的解释参数关系模型 | 有自然伽马、声波及电阻率等测井曲线,有根据实验数据建立起来的关系模型 | 既取决于测井质量,又取决于参数关系模型的建立,还取决于含气量的计算方法 | |
现场测试 | 浸水观察 | 将岩心放入水中,逸出气在水中直接可见 | 将岩心清洗后放置于透明的清水容器中 | 最简单的观察方法,随处可用 | 属于经验估计,标准难以统一,误差大 |
现场解析 | 在模拟地层温度条件下,收集计量从岩心中解吸逃逸的气体总量 | 模拟地层温度,测准解吸气和残余气,合理获得损失气 | 对于取心井段均可实施,适用于各种可能的页岩含气目的层 | 直接沿袭自煤层气的现场解析法(USBM法等),无法合理求得损失气 | |
保压取心 | 使岩心在维持原始地层压力条件下,达到地表并进行测量 | 保持平衡钻井条件下完成取心作业,核实取心筒内压力,完成检测 | 当钻遇断层破碎带,或者裂缝较为发育时,该方法的误差较大 | 当满足保压取心和含气量评价条件时,可获得较为准确的数据, | |
实验计算 | 等温吸附 | 在地层温度条件下,模拟不同压力时的天然气吸附能力 | 提高测试精度,合理获得压力与吸附气量之间的关系 | 主要用于计算页岩的最大吸附含气量和临界解吸压力 | 所得数据为最大吸附能力,煤层气的测试方法需要修正 |
模拟计算 | 在地层温度和压力条件下,分别根据储集空间和吸附能力计算游离和吸附气量,求和得总含气量 | 同时计算孔隙和裂缝所能容纳的游离气量,计算吸附气,在总含气量中扣除重叠计算的部分 | 对于具备有机碳含量、裂缝孔隙度、埋藏深度等参数的研究对象,可获得计算含气量 | 计算结果受较多因素影响,通常大于实际数值。但出现高压异常时,计算结果变化相反 | |
地质分析 | 图版查阅 | 根据已知的有机碳含量、埋藏深度等条件,直接在图版上查询结果 | 增加对实际地质条件的考量,根据地质特殊性对理论值进行修正 | 缺乏页岩气地质研究资料时的一种简单、快捷预测方法 | 由于图版法考虑的因素较为有限,通常需要根据实际资料进行校正 |
地质类比 | 依据页岩气成藏地质条件的相似性进行类比计算 | 选择对含气量有主控影响的参数进行相似度计算 | 在可用资料少、情况下的常用方法 | 受研究认识程度、类比区及类比参数等影响较大 | |
生产测试 | 试井分析 | 在一定的生产制度下,测试获得不同条件下的天然气产量,计算获得地层含气量 | 观察钻井、压裂、排采后的页岩气显示情况,在确定的生产制度下计算含气量 | 适用于已有钻井实施,目前正处于压裂、排采、试气阶段的评价对象 | 可信度相对较高,但取决于钻探及储层改造的工程质量,也取决于试井方法 |
生产测试 | 根据压裂效果及累计产气量进行计算 | 借助页岩气生产过程中的EUR计算获得 | 已有页岩气生产井和页岩气产量积累 | 使用不同阶段的地层累计产气量进行计算 |
1 | 邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41 (1): 1- 12. |
Zou Caineng , Pan Songqi , Jing Zhenhua , et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41 (1): 1- 12. | |
2 | 赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2020, 25 (1): 31- 44. |
Zhao Wenzhi , Jia Ailin , Wei Yunsheng , et al. Progress in shale gas exploration in China and Prospects for future development[J]. China Petroleum Exploration, 2020, 25 (1): 31- 44. | |
3 | 董大忠, 王玉满, 黄金亮, 等. 中国页岩气发展机遇与挑战[C]//中国地质学会. 推动地质科技创新, 支撑找矿突破实践, 服务美丽中国建设——中国地质学会2013年学术年会. 昆明: 2013: 510-511. |
Dong Dazhong, Wang Yuman, Huang Jinliang, et al.Opportunities and challenges for China's shale gas development[C]//Geological Society of China.To promote innovation in geological science and technology, support breakthrough in prospecting practice, and serve the construction of a Beautiful China-2013 Annual Academic Conference of Geological Society of China.Kunming: 2013: 510-511. | |
4 | 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因[J]. 地学前缘, 2016, 23 (1): 1- 10. |
Jin Zhijun , Hu Zongquan , Gao Bo , et al. Controlling factors on the enrichment and high productivity of shale gas in the WufengLongmaxi Formation, southeastern Sichuan Basin[J]. Earth Science Frontier, 2016, 23 (1): 1- 10. | |
5 | 康玉柱, 周磊. 中国非常规油气的战略思考[J]. 地学前缘, 2016, 23 (2): 1- 7. |
Kang Yuzhu , Zhou Lei . The strategic thinking of unconventional petroleum and gas in China[J]. Earth Science Frontier, 2016, 23 (2): 1- 7. | |
6 | 天工. BP报告预测2035年中国将成为全球第二大页岩气产区[J]. 天然气工业, 2015, 35 (5): 23. |
Tian Gong . The BP report predicts that China will become the world's second largest shale gas producer by 2035[J]. Natural Gas Industry, 2015, 35 (5): 23. | |
7 | 天工. 重庆现全球第二大页岩气田[J]. 天然气工业, 2015, 35 (10): 150. |
Tian Gong . Chongqing is now the world's second largest shale gas field[J]. Natural Gas Industry, 2015, 35 (10): 150. | |
8 |
张抗, 卢向前. 涪陵页岩气田发现并转入商业开发中国页岩气发展实现战略性突破[J]. 国际石油经济, 2015, 23 (1): 29- 30.
doi: 10.3969/j.issn.1004-7298.2015.01.012 |
Zhang Kang , Lu Xiangqina . China's shale gas development has made a strategic breakthrough with the discovery and transfer of the Fuling Shale gas field to commercial development[J]. International Petro-leum Economics, 2015, 23 (1): 29- 30.
doi: 10.3969/j.issn.1004-7298.2015.01.012 |
|
9 | 周庆凡. 美国页岩气革命历程及其启示[C]//中国地质学会. 中国地质学会科技情报专业委员会第三届学术研讨会. 昆明: 2012: 10. |
Zhou Fanqing.The course of American Shale gas Revolution and its enlightenment[C]//Geological Society of China.The third Academic Seminar of Science and Technology Information Committee of Geological Society of China.Kunming: 2012: 10. | |
10 | Milici R . Autogenic gas (self sourced) from shales-an example from the Appalachian Basin[M]. United States: United States Geological Survey, 1993, 253 278. |
11 | Peebles M W H . Evolution of the gas industry[M]. London: the Macmillan Press Ltd, 1980: 77- 81. |
12 |
赵靖舟, 方朝强, 张洁, 等. 由北美页岩气勘探开发看我国页岩气选区评价[J]. 西安石油大学学报(自然科学版), 2011, 26 (2): 1- 7, 110.
doi: 10.3969/j.issn.1673-064X.2011.02.001 |
Zhao Jingzhou , Fang Chaoqiang , Zhang Jie , et al. Evaluation of China shale gas from the exploration and development of North America shale gas[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2011, 26 (2): 1- 7, 110.
doi: 10.3969/j.issn.1673-064X.2011.02.001 |
|
13 | Webber M . Lessons from the shale revolution[J]. Mechanical engineering, 2013, 135 (10): 20. |
14 | Bertard C , Bruyet B , Gunther J . Determination of desorbable gas concentration of coal (direct method)[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1970, 7 (1): 43- 65. |
15 |
Schettler P D , Parmely C R , Lee W J . Gas storage and transport in Devonian Shales[J]. SPE Formation Evaluation, 1989, 4 (3): 371- 376.
doi: 10.2118/17070-PA |
16 | Schettler P D, Parmely C R.Contributions to total storage capacity in Devonian Shales[C]//SPE Eastern Regional Meeting.Society of Petroleum Engineers, Lexington, Kentucky: 1991: 22-25. |
17 |
Lu X C , Li F C , Watson A T . Adsorption measurements in Devonian shales[J]. Fuel, 1995, 74 (4): 599- 603.
doi: 10.1016/0016-2361(95)98364-K |
18 | Sondergeld C H, Newsham K E, Comisky J T, et al.Petrophysical considerations in evaluating and producing shale gas resources[C]//SPE Unconventional Gas Conference.Pittsburgh, Pennsylvania, USA: Society of Petroleum Engineers, 2010: 34. |
19 | Sneider R . Practical petrophysics for exploration and development[M]. Houston, Texas: AAPG, 1987. |
20 | Schmoker . Determination of organic-matter content of appalachian Devonian Shales from gamma-ray logs[J]. AAPG Bulletin, 1981, 65 (7): 2165- 2174. |
21 | Passey Q , Moretti F , Kulla J , et al. Practical model for organic richness from porosity and resistivity logs[J]. AAPG Bulletin, 1990, 74 (12): 1777- 1794. |
22 | Herron S , Tendre L . Deposition of organic facies[M]. Tulsa.AAPG. 1990: 57- 71. |
23 | Jacobi D, Gladkikh M, Lecompte B, et al.Integrated petrophysical evaluation of shale gas reservoirs[C]//CIPC/SPE Gas Technology Symposium 2008 Joint Conference.Society of Petroleum Engineers, Calgary, Alberta, Canada: 2008: 16-19. |
24 | NeffD B, 赵明. 烃类储集层的递增可采层厚度模拟[J]. 地球物理学进展, 1991, (2): 103- 114. |
Neff D B , Zhao Ming . Simulation of increasing recoverable reservoir thickness in hydrocarbon reservoirs[J]. Progress in Geophysics|Prog Geophys, 1991, (2): 103- 114. | |
25 |
Fatti J L , Smith G C , Vail P J , et al. Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack technique[J]. Geophysics, 1994, 59 (9): 1362- 1376.
doi: 10.1190/1.1443695 |
26 |
White R S . Seismic bright spots in the Gulf of Oman[J]. Earth and Planetary Science Letters, 1977, 37 (1): 29- 37.
doi: 10.1016/0012-821X(77)90143-1 |
27 | 中华人民共和国国家标准GB/T 23249-2009, 地勘时期煤层瓦斯含量测定方法[S]. 北京, 中国标准出版社. |
GB/T 23249-2009. Coalbed gas content measurment methods in geological expaloration period[S]. Beijing, China Standard Pess. | |
28 | GB/T19559-2008, 煤层气含量测定方法[S]. 北京, 中国标准出版社. |
GB/T19559-2008, Method of determing coalbed gas content[S].Beijing, China Standard Press. | |
29 |
聂海宽, 唐玄, 边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报, 2009, 30 (4): 484- 491.
doi: 10.3321/j.issn:0253-2697.2009.04.002 |
Nie Haikuan , Tang Xuan , Bian Ruikang . Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica, 2009, 30 (4): 484- 491.
doi: 10.3321/j.issn:0253-2697.2009.04.002 |
|
30 |
唐颖, 张金川, 刘珠江, 等. 解吸法测量页岩含气量及其方法的改进[J]. 天然气工业, 2011, 31 (10): 108- 112.
doi: 10.3787/j.issn.1000-0976.2011.10.026 |
Tang Ying , Zhang Jinchuan , Liu Zhujiang , et al. Use and improvement of the desorption method in shale gas content tests[J]. Natural Gas Industry, 2011, 31 (10): 108- 112.
doi: 10.3787/j.issn.1000-0976.2011.10.026 |
|
31 | 邢雅文, 张金川, 冯赫青, 等. 页岩含气量测试方法改进效果分析[J]. 断块油气田, 2015, 22 (5): 579- 583. |
Xing Yawen , Zhang Jinchuan , Feng Heqing , et al. Effectiveness analysis of determination method for shale gas content[J]. Fault-Block Oil & Gas Field, 2015, 22 (5): 579- 583. | |
32 | 胡微雪, 薛晓辉, 李维, 等. 页岩含气量测定方法分析与优化[J]. 中外能源, 2014, 19 (11): 61- 66. |
Hu Xuewei , Xue Xiaohui , Li Wei , et al. Analysis and optimization on determination method of gas content of the shale[J]. Sino-Global Energy, 2014, 19 (11): 61- 66. | |
33 |
薛冰, 张金川, 杨超, 等. 页岩含气量理论图版[J]. 石油与天然气地质, 2015, 339- 346.
doi: 10.11743/ogg20150220 |
Xue Bing , Zhang Jinchuan , Yang Chao , et al. Theoretical chart of shale gas content[J]. Oil & Gas Geology, 2015, 339- 346.
doi: 10.11743/ogg20150220 |
|
34 | 郭旭升, 尹正武, 李金磊. 海相页岩含气量地震定量预测技术及其应用——以四川盆地焦石坝地区为例[J]. 石油地球物理勘探, 2015, 50 (1): 144- 149. |
Guo Xusheng , Yin Zhengwu , Li Jinlei , et al. Quantitative seismic prediction of marine shale gas content: A case study in Jiaoshiba Area, Sichuan basin[J]. Oil Geophysical Prospecting, 2015, 50 (1): 144- 149. | |
35 |
陈超, 屈大鹏, 王明飞, 等. 川东南焦石坝地区海相泥页岩含气量预测方法探讨[J]. 石油物探, 2016, 55 (4): 597- 605.
doi: 10.3969/j.issn.1000-1441.2016.04.015 |
Chen Chao , Qu Dapeng , Wang Mingfei , et al. prediction method of gas content in marine mud shale at JSB area in southeast Sichuan Basin[J]. Geophysical Prospecting for Petroleum, 2016, 55 (4): 597- 605.
doi: 10.3969/j.issn.1000-1441.2016.04.015 |
|
36 | 张金川, 姜生玲, 唐玄, 等. 我国页岩气富集类型及资源特点[J]. 天然气工业, 2009, 29 (12): 109- 114. |
Zhang Jinchuan , Jiang Shengling , Tang Xuan , et al. Accumulation types and resources characteristics of shale gas in China[J]. Natural Gas Industry, 2009, 29 (12): 109- 114. | |
37 | Law B E , Curtis J B . Introduction to unconventional petroleum systems[J]. AAPG Bulletin, 2002, 86 (11): 1851- 1852. |
38 | Bowker K A . Barnett Shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91 (4): 523- 533. |
39 | 武景淑, 于炳松, 李玉喜. 渝东南渝页1井页岩气吸附能力及其主控因素[J]. 西南石油大学学报(自然科学版), 2012, 34 (4): 40- 48. |
Wu Jingshu , Yu Bingsong , Li Yuxi . Adsorption capacity of shale gas and controlling factors from the Well Yuye 1 at the southeast of Chongqing[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2012, 34 (4): 40- 48. | |
40 | 吉利明, 邱军利, 张同伟, 等. 泥页岩主要黏土矿物组分甲烷吸附实验[J]. 地球科学(中国地质大学学报), 2012, 37 (5): 1043- 1050. |
Ji Liming , Qiu Junli , Zhang Tongwei , et al. Experiments on methane adsorption of common clay minerals in shale[J]. Earth Science(Journal of China University of Geosciences), 2012, 37 (5): 1044- 1050. | |
41 | 侯宇光, 何生, 易积正, 等. 页岩孔隙结构对甲烷吸附能力的影响[J]. 石油勘探与开发, 2014, 41 (2): 248- 256. |
Hou Yuguang , He Sheng , Yi Jizheng , et al. Effect of pore structure on methane sorption potential of shales[J]. Petroleum Exploration and Development, 2014, 41 (2): 248- 256. | |
42 | 姜振学, 李卓, 唐相路, 等. 页岩气成藏富集主控因素研究及目标优选[J]. 吉林大学学报(地球科学版), 2015, 45 (A1): 1671- 5888. |
Jiang Zhenxue , Li Zhuo , Tang Xianglu , et al. Study on main controlling factors and target optimization of shale gas accumulation and enrichment[J]. Journal Of Jilin University (Earth Science Edition), 2015, 45 (A1): 1671- 5888. | |
43 | Ambrose R J , Hartman R C , Diaz-Campos M , et al. Shale gas-in-place calculations Part I: New pore-scale considerations[J]. SPE Journal, 2012, 17 (1): 219- 229. |
44 | Loucks R , Reed R , Ruppel S , et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79 (12): 848- 861. |
45 | Reed R , Loucks R . Imaging nanoscale pores in the Mississippian Barnett Shale of the northern Fort Worth Basin[J]. AAPG Annual Convention Abstracts, 2007, 16, 115. |
46 | O'brien N R . Shale lamination and sedimentary processes[J]. Geological Society London Special Publications, 1996, 116 (1): 23- 36. |
47 | 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24 (7): 15- 18. |
Zhang Jinchuan , Jin Zhijun , Yuan Mingsheng , et al. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24 (7): 15- 18. | |
48 | 张金川, 薛会, 张德明, 等. 页岩气及其成藏机理[J]. 现代地质, 2003, 17 (4): 466- 466. |
Zhang Jinchuan , Xue Hui , Zhang Deming , et al. Shale gas and its accumulation mechanism[J]. Geoscience, 2003, 17 (4): 466- 466. | |
49 | 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29 (4): 492- 506. |
Ju Yiwen , Bu Hongling , Wang Guochang . Main characteristics of shale gas reservoir and its effect on the reservoir reconstruction[J]. Advances in Earth Science, 2014, 29 (4): 492- 506. | |
50 | 肖贤明, 王茂林, 魏强, 等. 中国南方下古生界页岩气远景区评价[J]. 天然气地球科学, 2015, 26 (8): 1433- 1445. |
Xiao Xianming , Wang Maolin , Wei Qiang , et al. Evaluation of Lower Paleozoic shale with shale gas prospect in south China[J]. Natural Gas Geoscience, 2015, 26 (8): 1433- 1445. | |
51 | 刘树根, 邓宾, 钟勇. 四川盆地及周缘下古生界页岩气深埋藏强改造独特地质作用[J]. 地学前缘, 2016, 23 (1): 11- 28. |
Liu Shugen , Deng Bin , Zhong Yong , et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23 (1): 11- 28. | |
52 | 翟刚毅, 王玉芳, 包书景, 等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学: 中国地质大学学报, 2017, 42 (7): 1057- 1068. |
Zhai Gangyi , Wang Yufang , Bao Shujing , et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in Southern China[J]. Earth Science, 2017, 42 (7): 1057- 1068. | |
53 | 周文, 苏瑗, 王付斌, 等. 鄂尔多斯盆地富县区块中生界页岩气成藏条件与勘探方向[J]. 天然气工业, 2011, 31 (2): 29- 33. |
Zhou Wen , Su Yuan , Wang Fubin , et al. Shale gas pooling conditions and exploration targets in the Mesozoic of Fuxian Block, Ordos Basin[J]. Natural Gas Industry, 2011, 31 (2): 29- 33. | |
54 | Liu Wenhui , Yu Xinke , Zhang Baisheng . Carbon isotope distribution in aromatic nuclei and aliphatic side chains of sedimentary organic matter[J]. Chinese Science Bulletin, 1995, 40 (9): 753- 757. |
55 | Curtis J B . Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 4586 (11): 1921- 1938. |
56 | 卢双舫, 黄文彪, 陈方文, 等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发, 2012, 39 (2): 249- 256. |
Lu Shuangfang , Huang Wenbiao , Chen Fangwen , et al. Classification and evaluation criteria of shale oil and gas resources: Discussion and application[J]. Petroleum exploration and development, 2012, 39 (2): 249- 256. | |
57 | Zhang T , Ellis G S , Ruppel S C , et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry, 2012, 47, 120- 131. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[5] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[6] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[7] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[8] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[9] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[10] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[11] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[12] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[13] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[14] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
[15] | 米立军, 徐建永, 李威. 渤海海域页岩油资源潜力[J]. 石油与天然气地质, 2023, 44(6): 1366-1377. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||