石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (6): 2041-2058.doi: 10.11743/ogg20250619
收稿日期:2025-08-15
修回日期:2025-10-19
出版日期:2025-12-30
发布日期:2025-12-25
第一作者简介:蒋廷学(1969—),男,正高级工程师、中国石化集团公司首席专家,水力压裂理论及技术研究。E-mail:jiangtx.sripe@sinopec.com。
基金项目:
Tingxue JIANG1,2,3(
), Jun ZHOU1,2,3
Received:2025-08-15
Revised:2025-10-19
Online:2025-12-30
Published:2025-12-25
摘要:
总结了中国页岩油气储层改造理论与技术的发展历程及演进路径,为今后的高效勘探开发提供理论指导与技术支撑。通过对比中美页岩储层地质参数特征及差异分析,采用文献追踪方法,系统梳理压裂理念、理论模型及关键技术的演进路径,提出中国页岩油气储层改造技术的整体发展框架。中国通过“高强度改造”弥补储层劣势,压裂液黏度逐步降低至滑溜水主导(占比 > 90%),支撑剂向多级微支撑演进,裂缝监测实现高精度处理与解释,最终形成复杂缝网压裂技术体系及调控闭环系统。揭示了中国特色页岩油气储层改造技术演进规律,提出了地质-工程一体化、少水环保技术和智能化装备等发展方向,对实现页岩油气革命及国家能源战略目标具有重要指导意义。
中图分类号:
表1
美国主要页岩层系地质特征[8]"
| 地层 | 面积/km² | 埋深/m | 厚度/m | 孔隙度/% | 黏土矿物含量/% | TOC/% | 岩相描述 | |
|---|---|---|---|---|---|---|---|---|
| 统 | 组 | |||||||
| 上白垩统 | 尼尔布拉勒组 | 丹佛-朱尔斯堡盆地:15 680*;粉河盆地:10 734* | 粉河盆地:610 ~ 2 134 | 粉河盆地:46 ~ 198 | 粉河盆地:3.0 ~ 8.0 | 20 ~ 30 | 丹佛-朱尔斯堡盆地:0.50 ~ 8.00, 平均值3.20;粉河盆地:0.90 ~ 3.24 | 白垩岩和泥灰岩互层, 西部局部见砂岩, 向盆地中心逐渐过渡为页岩和粉砂岩 |
| 鹰滩组 | 35 584 | 232 ~ 4 893, 平均值2 583 | 8 ~ 78, 平均值37 | 平均值6.6 | 14 ~ 20 | 0.82 ~ 4.94, 平均值2.62 | 富有机质泥灰岩、浮游有孔虫泥灰岩和颗粒灰岩, 圣马科斯隆起以东黏土含量增加 | |
| 上侏罗统 | 海恩斯维尔组 | 14 747 | 3 102 ~ 4 939, 平均值3 589 | 0 ~ 117, 平均值62 | 平均值6.7 | 10 ~ 50 | 0.70 ~ 6.20 | 生物扰动钙质泥岩、层状钙质泥岩、粉砂质鲕粒状钙质泥岩、非层状钙质富有机质泥岩 |
| 下二叠统 | 狼营组(米德兰盆地) | 39 648 | 210 ~ 2 133, 平均值1 465 | 210 ~ 1 302, 平均554 | 平均值7.6 | 26 | 0.50 ~ 6.40, 平均值2.40 | 硅质泥岩、钙质泥岩、泥质生物碎屑岩、骨架粒泥灰岩/泥粒灰岩 |
| 狼营组(特拉华盆地) | 32 864 | 170 ~ 2 867, 平均值1 942 | 38 ~ 2 989, 平均值865 | 平均值7.6 | 21 | 0.50 ~ 7.30, 平均值2.30 | 黏土质泥岩、硅质泥岩、泥质生物碎屑岩、骨架粒泥灰岩/泥粒灰岩、泥质浮石 | |
| 上密西西比统 | 费耶特维尔组 | 6 032 | 80 ~ 2 401, 平均值886 | 18 ~ 215, 平均值83 | 平均值6.3 | 29 ~ 32 | 0.10 ~ 10.80, 平均值4.07 | 灰色-黑色页岩, 下部有机质含量较高, 局部砂岩将该套页岩分成上、下两段 |
| 巴内特组 | 21 111 | 799 ~ 2 484, 平均值1 638 | 18 ~ 286, 平均值87 | 平均值5.6 | 27 | 2.00 ~ 6.00; 0.36 ~ 9.66, 平均值3.10; 3.30 ~ 4.50 | 层状硅质泥岩、层状含黏土灰岩、骨架黏土质灰泥岩 | |
| 上泥盆统-下密西西比统 | 巴肯组 | 44 853 | 1 376 ~ 2 737, 平均值2 286 | 0 ~ 24, 平均值11 | 平均值5.9 | 20 ~ 30 | 1.79 ~ 20.20, 平均值2.62 | 富有机质硅质泥岩、粒泥灰岩、钙质粉砂岩、白云岩、粉砂岩、云质泥岩 |
| 上泥盆统 | 伍德福德组 | 35 715* | 平均值2 610 | 平均值75 | 3.0 ~ 6.8 | 15 ~ 3 | 5.00 ~ 6.50 | 黏土质页岩、黏土质硅质页岩、白云质黏土质泥岩、硅质泥岩, 往南燧石夹层增多 |
| 中泥盆统 | 马塞勒斯组 | 46 648 | 95 ~ 2 239,平均值1 325 | 3 ~ 178, 平均值39 | 平均值7.4 | 0 ~ 65 | 1.00 ~ 10.00,1.40 ~ 4.30;3.87 ~ 11.25;0.17 ~ 7.22,平均值2.11 | 粗粒钙质泥岩、骨架粒泥灰岩/泥粒灰岩、钙质/炭质中粒泥岩、硅质炭质细粒泥岩、含黏土粗粒泥岩 |
| 中奥陶统 | 尤蒂卡组/波因特普莱森特组 | 63 772* | 933 ~ 3 773,平均值2 348 | 17 ~ 75,平均值46 | 3.2 ~ 6.5 | 32 ~ 49 | 尤蒂卡组:1.00 ~ 3.50;波因特普莱森特组上段:< 1.00;下段:3.00 ~ 8.00,平均值范围4.00 ~ 5.00(对应不同井位) | 尤蒂卡组:含钙页岩 (方解石含量 10% ~ 60%);波因特普莱森特组上段:贫有机质页岩, 含少量碳酸盐岩; 波因特普莱森特组下段: 富有机质页岩 (碳酸盐矿物含量 40% ~ 60%) |
表2
国内外主要页岩气田地质参数对比[9]"
| 页岩层系 | 美国页岩气层 | 中国页岩气层 | ||||||
|---|---|---|---|---|---|---|---|---|
| Fayetteville | Barnett | Haynesville | Marcellus | Utica | 涪陵 | 黔南 | 延长组 | |
| 沉积盆地 | Arkoma | Fort Worth | Louisiana salt | Appalachian | Appalachian | 四川 | 四川 | 鄂尔多斯 |
| 地层时代 | 石炭纪 | 石炭纪 | 侏罗纪 | 泥盆纪 | 奥陶纪 | 奥陶纪—志留纪 | 奥陶纪—志留纪 | 三叠纪 |
| 地层名称 | Fayetteville | Barnett | Haynesville | Marcellus | Utica | 五峰组-龙马溪组 | 五峰组-龙马溪组 | 延长组 |
| 分布面积/(104 km2) | 2.30 | 1.55 | 2.30 | 24.60 | 28.00 | 0.70 | 0.76 | 8.00 ~ 10.00 |
| 深度/m | 330 ~ 2 300 | 1 980 ~ 2 591 | 3 350 ~ 4 270 | 1 200 ~ 2 400 | 2 100 ~ 4 300 | 2 000 ~ 4 000 | 2 000 ~ 4 500 | 500 ~ 1 800 |
| 净厚度/m | 6 ~ 60 | 30 ~ 180 | 61 ~ 107 | 18 ~ 83 | 20 ~ 300 | 40 ~ 60 | 40 ~ 60 | 16 ~ 24 |
| 沉积环境 | 深水陆棚 | 深水陆棚 | 深水陆棚 | 陆表海 | 陆表海 | 深水陆棚 | 深水陆棚 | 湖相 |
| 主要岩石类型 | 页岩 | 页岩 | 页岩 | 页岩 | 页岩 | 页岩 | 页岩 | 页岩 |
| TOC/% | 4.00 ~ 9.80 | 4.00 ~ 5.00 | 0.50 ~ 4.00 | 4.4 ~ 9.7 | 3.00 ~ 8.00 | 2.00 ~ 8.00 | 2.50 ~ 8.50 | 0.50 ~ 25.50 |
| Ro/% | 1.00 ~ 4.00 | 0.80 ~ 1.40 | 1.80 ~ 2.50 | 1.23 ~ 2.56 | 0.60 ~ 3.20 | 2.65 | 2.50 ~ 3.80 | 0.50 ~ 1.50 |
| 总孔隙度/% | 2.0 ~ 8.0 | 4.0 ~ 5.0 | 8.0 ~ 9.0 | 9.0 ~ 11.0 | 3.0 ~ 6.0 | 1.2 ~ 8.1 | 2.0 ~ 12.0 | 0.8 ~ 3.0 |
| 孔径/nm | 5 ~ 100 | 5 ~ 750 | 20 | 10 ~ 100 | 15 ~ 200 | 50 ~ 200 | 50 ~ 100 | 3 ~ 100 |
| 基质渗透率/(10-3 μm2) | 0.100 ~ 0.800 | 0.073 ~ 0.500 | 0.050 ~ 0.800 | 0.100 ~ 0.700 | 0.800 ~ 3.500 | 0.001 ~ 5.700 | 0.020 ~ 1.730 | 0.012 ~ 0.650 |
| 孔隙类型 | 有机质孔 | 有机质孔 | 有机质孔 | 有机质孔 | 有机质孔 | 有机质孔 | 有机质孔 | 无机孔+有机孔 |
| 含气量/(m3/t) | 1.70 ~ 6.23 | 8.50 ~ 9.91 | 2.83 ~ 9.34 | 1.70 ~ 2.83 | — | 1.30 ~ 6.30 | 2.00 ~ 6.00 | 0.50 ~ 3.00 |
| 游离气比例/% | 60 ~ 80 | 80 | 80 | 40 ~ 90 | 20 ~ 65 | 70 ~ 80 | 60 ~ 80 | 50 ~ 60 |
| 脆性矿物含量/% | 70 ~ 80 | 30 ~ 60 | 50 ~ 70 | 40 ~ 70 | 70 ~ 80 | 50 ~ 80 | 55 ~ 80 | 40 ~ 70 |
| 泊松比 | 0.23 | 0.23 ~ 0.27 | 0.20 ~ 0.30 | 0.15 ~ 0.35 | 0.20 ~ 0.30 | 0.11 ~ 0.29 | 0.15 ~ 0.25 | 0.15 ~ 0.27 |
| 压力系数 | 0.98 | 0.97 ~ 1.00 | 1.60 ~ 2.00 | 0.45 ~ 0.91 | 1.10 ~ 1.35 | 1.55 | 1.20 ~ 2.10 | 1.00 |
| 井控面积/(104 m2) | 0.300 ~ 0.500 | 0.240 ~ 0.650 | 0.164 ~ 2.270 | 0.160 ~ 0.650 | 0.720 | 0.600 ~ 0.800 | 0.600 ~ 0.800 | — |
| 地质资源量/(108 m3) | 14 700 | 92 600 | 203 000 | 424 700 | 60 000 | 6 008 | 67 900 | 5 630 |
| 储量丰度/(108 m3/km2) | 6.30 | 3.16 | 5.07 | 1.73 | 1.00 ~ 1.50 | 10.00 | 5.00 ~ 8.00 | 2.20 |
| 技术可采资源量/(108 m3) | 3 624 | 7 362 | 20 493 | 22 281 | 10 352 | 481 | 12 000 | — |
| 水平井初产量/(104 m3/d) | 7.0 | 5.3 | 28.0 | 12.5 | 13.3 | 18.0 | 13.0 | 0.5 ~ 1.0 |
| 单井 EUR/(108 m3) | 0.42 | 0.70 | 2.50 | 1.06 | 1.30 | 1.50 | 1.00 | 0.10 ~ 0.30 |
| 2016年总产量/(108 m3) | 208 | 330 | 393 | 1691 | 403 | 50 | 28 | 0 |
| [1] | 雷群, 翁定为, 管保山, 等. 中美页岩油气开采工程技术对比及发展建议[J]. 石油勘探与开发, 2023, 50(4): 824-831. |
| LEI Qun, WENG Dingwei, GUAN Baoshan, et al. Shale oil and gas exploitation in China: Technical comparison with US and development suggestions[J]. Petroleum Exploration and Development, 2023, 50(4): 824-831. | |
| [2] | 张奥博, 汤达祯, 陶树, 等. 中美典型含油气页岩地质特征及开发现状[J]. 油气地质与采收率, 2019, 26(1): 37-45. |
| ZHANG Aobo, TANG Dazhen, TAO Shu, et al. Analysis of geological background and development situation of typical oil/gas-bearing shales in China and America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 37-45. | |
| [3] | 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. |
| JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. | |
| [4] | 杨金华. 页岩油气革命促成美国非常规油气开发常规化、主流化[J]. 世界石油工业, 2022, 29(2): 78-79. |
| YANG Jinhua. The shale oil and gas revolution has contributed to the normalization and mainstreaming of unconventional oil and gas development in the United States[J]. World Petroleum Industry, 2022, 29(2): 78-79. | |
| [5] | 张福祥, 李国欣, 郑新权, 等. 北美后页岩革命时代带来的启示[J]. 中国石油勘探, 2022, 27(1): 26-39. |
| ZHANG Fuxiang, LI Guoxin, ZHENG Xinquan, et al. Enlightenment from the post shale revolution era in North America[J]. China Petroleum Exploration, 2022, 27(1): 26-39. | |
| [6] | Energy Information Administration U.S.. Monthly energy review: DOE/EIA-0035[R/OL]. (2021-03-25)[2024-01-01]. . |
| [7] | Energy Information Administration U.S.. Natural gas[EB/OL]. [2024-01-01]. . |
| [8] | MCMAHON T P, LARSON T E, ZHANG T, 等. 美国页岩油气地质特征及勘探开发进展[J]. 石油勘探与开发, 2024, 51(4): 807-828. |
| MCMAHON T P, LARSON T E, ZHANG T, et al. Geologic characteristics, exploration and production progress of shale oil and gas in the United States: An overview[J]. Petroleum Exploration and Development, 2024, 51(4): 807-828. | |
| [9] | 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796. |
| ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796. | |
| [10] | VEATCH R W Jr, MOSCHOVIDIS Z A. An overview of recent advances in hydraulic fracturing technology[C]//International Meeting on Petroleum Engineering, Beijing, 1986. Richardson: Society of Petroleum Engineers, 1986: SPE-14085-MS. |
| [11] | PENNY G S, PURSLEY J T, CLAWSON T D. Field study of completion fluids to enhance gas production in the Barnett shale[C]//SPE Gas Technology Symposium, Calgary, 2006. Richardson: Society of Petroleum Engineers, 2006: SPE-100434-MS. |
| [12] | MAXWELL S C, URBANCIC T I, STEINSBERGER N, et al. Microseismic imaging of hydraulic fracture complexity in the Barnett shale[C]//SPE Annual Technical Conference and Exhibition, San Antonio, 2002. Richardson: Society of Petroleum Engineers, 2002: SPE-77440-MS. |
| [13] | MAYERHOFER M J, LOLON E P, WARPINSKI N R, et al. What is stimulated reservoir volume (SRV)?[C]//SPE Shale Gas Production Conference, Fort Worth, 2008. Richardson: Society of Petroleum Engineers, 2008: SPE-119890-MS. |
| [14] | JARIPATKE O A, BARMAN I, NDUNGU J G, et al. Review of Permian completion designs and results[C]//SPE Annual Technical Conference and Exhibition, Dallas, 2018. Richardson: Society of Petroleum Engineers, 2018: SPE-191560-MS. |
| [15] | XIONG Hongjie. The effective cluster spacing plays the vital role in unconventional reservoir development-Permian Basin case studies[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, 2020. Richardson: Society of Petroleum Engineers, 2020: SPE-199721-MS. |
| [16] | MELCHER H, MAYERHOFER M, AGARWAL K, et al. Shale frac designs move to just-good-enough proppant economics[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, 2020. Richardson: Society of Petroleum Engineers, 2020: SPE-199751-MS. |
| [17] | XU Tao, ZHENG Wei, BAIHLY J, et al. Permian basin production performance comparison over time and the parent-child well study[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, 2019. Richardson: Society of Petroleum Engineers, 2019: SPE-194310-MS. |
| [18] | ALTHANI M, LANGE I. US tight-oil efficiency: A Permian basin case study[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, 2023. Richardson: Society of Petroleum Engineers, 2023: URTEC-3832698-MS. |
| [19] | GRIESER B, WIEMERS T, HILL B. Fluid frictional diversion technique for sequential multistage horizontal stimulation[C]//SPE Rocky Mountain Regional Meeting, Gillette, 1999. Richardson: Society of Petroleum Engineers, 1999: SPE-55615-MS. |
| [20] | JIANG Tingxue, ZHANG Shikun, WANG Haitao, et al. Case study: Dual temporary plugging & high proppant intensity fracturing stimulation technique in deep shale gas play in Sichuan Basin, China[C]//56th U.S. Rock Mechanics/Geomechanics Symposium, Santa Fe, 2022. Alexandria: American Rock Mechanics Association, 2022: ARMA-2022- 0659. |
| [21] | JIANG Tingxue, WANG Haitao, LIU Hu, et al. The integrated & dynamic geo-engineering fracturing technology for deep shale gas play in southeast Sichuan Basin, China[C]//57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, 2023. Alexandria: American Rock Mechanics Association, 2023: ARMA-2023- 0514. |
| [22] | 蒋廷学, 卞晓冰. 深层油气藏多级迂回暂堵压裂技术研究[J]. 深圳大学学报(理工版), 2021, 38(6): 590-597. |
| JIANG Tingxue, BIAN Xiaobing. Multistage circuitous-temporary plugging fracturing technology for deep oil-gas reservoirs[J]. Journal of Shenzhen University (Science & Engineering), 2021, 38(6): 590-597. | |
| [23] | 蒋廷学, 肖博, 沈子齐, 等. 陆相页岩油气水平井穿层体积压裂技术[J]. 石油钻探技术, 2023, 51(5): 8-14. |
| JIANG Tingxue, XIAO Bo, SHEN Ziqi, et al. Vertical penetration of network fracturing technology for horizontal wells in continental shale oil and gas[J]. Petroleum Drilling Techniques, 2023, 51(5): 8-14. | |
| [24] | 蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术, 2023, 51(4): 184-191. |
| JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(4): 184-191. | |
| [25] | EHLIG-ECONOMIDES C A, ECONOMIDES M J. Water as proppant[C]//SPE Annual Technical Conference and Exhibition, Denver, 2011. Richardson: Society of Petroleum Engineers, 2011: SPE-147603-MS. |
| [26] | LAU H C, RADHAMANI A V, RAMAKRISHNA S. Maximizing production from shale reservoir by using micro-sized proppants[C]//International Petroleum Technology Conference, Beijing, 2019. Red Hook, NY: Curran Associates, Inc., 2019: IPTC-19437-MS. |
| [27] | PALISCH T, LORWONGNGAM A O, KALFAYAN L, et al. Initial observations from a Bakken microproppant field trial[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, 2023. Richardson: Society of Petroleum Engineers, 2023: SPE-212341-MS. |
| [28] | 程鹏. ScCO2压裂页岩缝内微支撑剂弹塑性压嵌实验研究[D]. 重庆: 重庆大学, 2022: 1-103. |
| CHENG Peng. Experimental study on the elastoplastic embedment of micro-proppant in shale fractures in ScCO2 fracturing[D]. Chongqing: Chongqing University, 2022: 1-103. | |
| [29] | RAMURTHY M, TOWLER B F, HARRIS H G, et al. Effects of high pressure-dependent leakoff (PDL) and high process-zone stress (PZS) on stimulation treatments and production[C]//SPE Unconventional Resources Conference and Exhibition-Asia Pacific, Brisbane, 2013. Richardson: Society of Petroleum Engineers, 2013: SPE-167038-MS. |
| [30] | SHLYAPOBERSKY J, WONG G K, WALHAUG W W. Overpressure calibrated design of hydraulic fracture stimulations[C]//SPE Annual Technical Conference and Exhibition, Houston, 1988. Richardson: Society of Petroleum Engineers, 1988: SPE-18194-MS. |
| [31] | 卢祥国, 任书泉. 裂缝几何尺寸的拟三维数值计算模型和方法[J]. 石油钻采工艺, 1990, 12(3): 47-54. |
| LU Xiangguo, REN Shuquan. 3D numerical model and method for geometric size simulation of fracture[J]. Oil Drilling & Production Technology, 1990, 12(3): 47-54. | |
| [32] | 赵金洲, 彭瑀, 李勇明, 等. 考虑垂向摩阻的裂缝拟三维延伸模型[J]. 中国石油大学学报(自然科学版), 2016, 40(1): 69-78. |
| ZHAO Jinzhou, PENG Yu, LI Yongming, et al. A pseudo 3D fracture propagation model with consideration of vertical flow resistance[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(1): 69-78. | |
| [33] | MEYER B R. Design formulae for 2-D and 3-D vertical hydraulic fractures: Model comparison and parametric studies[C]//SPE Unconventional Gas Technology Symposium, Louisville, 1986. Richardson: Society of Petroleum Engineers, 1986: SPE-15240-MS. |
| [34] | CLEARY M P, BARR D T, WILLIS R M. Enhancement of real-time hydraulic fracturing models with full 3-D simulation[C]//SPE Gas Technology Symposium, Dallas, 1988. Richardson: Society of Petroleum Engineers, 1988: SPE-17713-MS. |
| [35] | ADVANI S H, LEE T S, DEAN R H, et al. Consequences of fracturing fluid lag in three-dimensional hydraulic fractures[C]//Low Permeability Reservoirs Symposium, Denver, 1993. Richardson: Society of Petroleum Engineers, 1993: SPE-25888-MS. |
| [36] | COULTER G R, BENTON E G, THOMSON C L. Water fracs and sand quantity: A Barnett shale example[C]//SPE Annual Technical Conference and Exhibition, Houston, 2004. Richardson: Society of Petroleum Engineers, 2004: SPE-90891-MS. |
| [37] | RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[C]//SPE Annual Technical Conference and Exhibition, Denver, 2008. Richardson: Society of Petroleum Engineers, 2008: SPE-115258-MS. |
| [38] | 李庆辉, 陈勉, 金衍, 等. 页岩气储层岩石力学特性及脆性评价[J]. 石油钻探技术, 2012, 40(4): 17-22. |
| LI Qinghui, CHEN Mian, JIN Yan, et al. Rock mechanical properties and brittleness evaluation of shale gas reservoir[J]. Petroleum Drilling Techniques, 2012, 40(4): 17-22. | |
| [39] | 蒋廷学, 卞晓冰, 苏瑗, 等. 页岩可压性指数评价新方法及应用[J]. 石油钻探技术, 2014, 42(5): 16-20. |
| JIANG Tingxue, BIAN Xiaobing, SU Yuan, et al. A new method for evaluating shale fracability index and its application[J]. Petroleum Drilling Techniques, 2014, 42(5): 16-20. | |
| [40] | 蒋廷学, 路保平, 左罗, 等. 页岩气地质—工程可压度评价方法研究及应用[J]. 天然气与石油, 2022, 40(4): 68-74. |
| JIANG Tingxue, LU Baoping, ZUO Luo, et al. Research and applications on shale gas geologic-engineering fracness evaluation method[J]. Natural Gas and Oil, 2022, 40(4): 68-74. | |
| [41] | 陈勉, 葛洪魁, 赵金洲, 等. 页岩油气高效开发的关键基础理论与挑战[J]. 石油钻探技术, 2015, 43(5): 7-14. |
| CHEN Mian, GE Hongkui, ZHAO Jinzhou, et al. The key fundamentals for the efficient exploitation of shale oil and gas and its related challenges[J]. Petroleum Drilling Techniques, 2015, 43(5): 7-14. | |
| [42] | 庄茁, 柳占立, 王永亮. 页岩油气高效开发中的基础理论与关键力学问题[J]. 力学季刊, 2015, 36(1): 11-25. |
| ZHUANG Zhuo, LIU Zhanli, WANG Yongliang. Fundamental theory and key mechanical problems of shale oil gas effective extraction[J]. Journal of Mechanics, 2015, 36(1): 11-25. | |
| [43] | 赵金洲, 陈曦宇, 李勇明, 等. 水平井分段多簇压裂模拟分析及射孔优化[J]. 石油勘探与开发, 2017, 44(1): 117-124. |
| ZHAO Jinzhou, CHEN Xiyu, LI Yongming, et al. Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well[J]. Petroleum Exploration and Development, 2017, 44(1): 117-124. | |
| [44] | XU Wenyue, THIERCELIN M, GANGULY U, et al. Wiremesh: A novel shale fracturing simulator[C]//International Oil and Gas Conference and Exhibition in China, Beijing, 2010. Richardson: Society of Petroleum Engineers, 2010: SPE-132218-MS. |
| [45] | XU Wenyue, LI J, DU M. Quick estimate of initial production from stimulated reservoirs with complex hydraulic fracture network[C]//SPE Annual Technical Conference and Exhibition, Denver, 2011. Richardson: Society of Petroleum Engineers, 2011: SPE-146753-MS. |
| [46] | WENG X, KRESSE O, COHEN C, et al. Modeling of hydraulic fracture network propagation in a naturally fractured formation[C]//SPE Hydraulic Fracturing Technology Conference, The Woodlands, 2011. Richardson: Society of Petroleum Engineers, 2011: SPE-140253-MS. |
| [47] | IBÁÑEZ E, ALVARELLOS J, BEZERRA DE MELO R C, et al. A novel methodology to capture anisotropy in unconventional reservoirs: A case study with stress anisotropy[C]//ADIPEC, Abu Dhabi, 2023. Richardson: Society of Petroleum Engineers, 2023: SPE-216543-MS. |
| [48] | REN Jiawei, MU Lijun, LI Xiangping, et al. Optimizing refracturing models in tight oil reservoirs: An integrated workflow of geology and engineering based on four-dimensional dynamic stress field[C]//International Geomechanics Symposium, Al Khobar, 2023. Alexandria: American Rock Mechanics Association, 2023: ARMA-IGS-2023- 0114. |
| [49] | YANG Haixin, TANG Xuanhe, ZHU Haiyan, et al. Four-dimensional stress evolution and optimization of child well fracturing parameters in multi sub-layers shale gas reservoir[C]//58th U.S. Rock Mechanics/Geomechanics Symposium, Golden, 2024. Alexandria: American Rock Mechanics Association, 2024: ARMA-2024- 0070. |
| [50] | KRESSE O, COHEN C, WENG X, et al. Numerical modeling of hydraulic fracturing in naturally fractured formations[C]//45th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, 2011. Alexandria: American Rock Mechanics Association, 2011: ARMA-11- 363. |
| [51] | SUN Zhiyu, LIU Changyin, HUANG Zhiwen, et al. Mechanical interaction of multiple 3D fractures propagation for network fracturing[C]//SPE Asia Pacific Unconventional Resources Conference and Exhibition, Brisbane, 2015. Richardson: Society of Petroleum Engineers, 2015: SPE-176916-MS. |
| [52] | 赵金洲, 任岚, 沈骋, 等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业, 2018, 38(3): 1-14. |
| ZHAO Jinzhou, REN Lan, SHEN Cheng, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3): 1-14. | |
| [53] | URBAN-RASCON E, VIRUES C, AGUILERA R. 3D geomechanical modeling in the complex fracture network of the Horn River Shale using a fully-coupled hybrid hydraulic fracture HHF model: Permeability evolution and depletion[C]//SPE Canada Unconventional Resources Conference, Calgary, 2018. Richardson: Society of Petroleum Engineers, 2018: SPE-189795-MS. |
| [54] | AGUIRRE N, HU Xiaodong. Numerical simulation of proppant transport in complex fracture network[C]//SPE Argentina Exploration and Production of Unconventional Resources Symposium, Buenos Aires, 2023. Richardson: Society of Petroleum Engineers, 2023: SPE-212713-MS. |
| [55] | TOGAEV S E, GAVRILOV A V, ABIDOV K A, et al. Practical aspects of discrete fracture network modelling with neural network assisted integration of available data[C]//SPE Caspian Technical Conference and Exhibition, Atyrau, 2024. Richardson: Society of Petroleum Engineers, 2024: SPE-223399-MS. |
| [56] | CIEZOBKA J, REEVES S. Overview of hydraulic fracturing test sites (HFTS) in the Permian Basin and summary of selected results (HFTS-I in Midland and HFTS-II in Delaware)[C]//SPE/AAPG/SEG Latin America Unconventional Resources Technology Conference, Virtual, 2020. Richardson: Society of Petroleum Engineers, 2020: URTEC-2020-1544-MS. |
| [57] | WEIJERMARS R, WANG J. Microseismicity and dry shear-slip in the stimulated rock volume during fracture treatment in shale wells: Analyzing data from the hydraulic fracture test site (Permian Basin) with the linear superposition method (LSM)[C]//55th U.S. Rock Mechanics/Geomechanics Symposium, Virtual, 2021. Alexandria: American Rock Mechanics Association, 2021: ARMA-2021- 1808. |
| [58] | ALMARZOOG F, WU Kan, JIN Ge. Effective fracture geometry analysis based on data of well production, pressure gauge, and strain change of HFTS-1-III in Eagle Ford Shale[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, 2024. Richardson: Society of Petroleum Engineers, 2024: URTEC-4034948-MS. |
| [59] | 孙焕泉, 路智勇, 刘莉, 等. 四川盆地涪陵页岩气立体开发区压裂后取心技术与认识[J]. 石油勘探与开发, 2025, 52(3): 653-664. |
| SUN Huanquan, LU Zhiyong, LIU Li, et al. Technology and understanding of post-fracturing coring in three-dimensional development zone of Fuling shale gas, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2025, 52(3): 653-664. | |
| [60] | FREDD C N, DANIELS J L, BAIHLY J D. $40 Billion learning curve: Leveraging lessons learned to minimize the overall investment in unconventional plays[C]//SPE Middle East Unconventional Resources Conference and Exhibition, Muscat, 2015. Richardson: Society of Petroleum Engineers, 2015: SPE-172973-MS. |
| [61] | 蒋廷学, 李治平, 才博, 等. 松辽盆地南部致密气藏低伤害大型压裂改造技术研究与试验[J]. 石油钻采工艺, 2009, 31(4): 6-11. |
| JIANG Tingxue, LI Zhiping, CAI Bo, et al. Study and field test of low damage & massive hydraulic fracturing techniques in tight gas reservoirs in the South of Songliao Basin[J]. Oil Drilling & Production Technology, 2009, 31(4): 6-11. | |
| [62] | 许泽君, 夏红, 路占军, 等. 低伤害变参数大型压裂技术在二连探区的应用研究[J]. 油气井测试, 2006, 15(6): 53-56. |
| XU Zejun, XIA Hong, LU Zhanjun, et al. The application research the big model of adding sand fracture tech in Erlian exploration district[J]. Well Testing, 2006, 15(6): 53-56. | |
| [63] | 雷群, 胥云, 蒋廷学, 等. 用于提高低-特低渗透油气藏改造效果的缝网压裂技术[J]. 石油学报, 2009, 30(2): 237-241. |
| LEI Qun, XU Yun, JIANG Tingxue, et al. “Fracture network” fracturing technique for improving post-fracturing performance of low and ultra-low permeability reservoirs[J]. Acta Petrolei Sinica, 2009, 30(2): 237-241. | |
| [64] | 陈作, 王振铎, 曾华国. 水平井分段压裂工艺技术现状及展望[J]. 天然气工业, 2007, 27(9): 78-80. |
| CHEN Zuo, WANG Zhenduo, ZENG Huaguo. Status quo and prospect of staged fracturing technique in horizontal wells[J]. Natural Gas Industry, 2007, 27(9): 78-80. | |
| [65] | 蒋廷学, 卞晓冰, 袁凯, 等. 页岩气水平井分段压裂优化设计新方法[J]. 石油钻探技术, 2014, 42(2): 1-6. |
| JIANG Tingxue, BIAN Xiaobing, YUAN Kai, et al. A new method in staged fracturing design optimization for shale gas horizontal wells[J]. Petroleum Drilling Techniques, 2014, 42(2): 1-6. | |
| [66] | 周德华, 焦方正, 贾长贵, 等. JY1HF页岩气水平井大型分段压裂技术[J]. 石油钻探技术, 2014, 42(1): 75-80. |
| ZHOU Dehua, JIAO Fangzheng, JIA Changgui, et al. Large-scale multi-stage hydraulic fracturing technology for shale gas horizontal Well JY1HF[J]. Petroleum Drilling Techniques, 2014, 42(1): 75-80. | |
| [67] | 贾长贵, 路保平, 蒋廷学, 等. DY2 HF深层页岩气水平井分段压裂技术[J]. 石油钻探技术, 2014, 42(2): 85-90. |
| JIA Changgui, LU Baoping, JIANG Tingxue, et al. Multi-stage horizontal well fracturing technology in deep shale gas Well DY2 HF[J]. Petroleum Drilling Techniques, 2014, 42(2): 85-90. | |
| [68] | 蒋廷学, 卞晓冰, 王海涛, 等. 页岩气水平井分段压裂排采规律研究[J]. 石油钻探技术, 2013, 41(5): 21-25. |
| JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Flow back mechanism study of multi-stage fracturing of shale gas horizontal wells[J]. Petroleum Drilling Techniques, 2013, 41(5): 21-25. | |
| [69] | 蒋廷学, 王海涛. 中国石化页岩油水平井分段压裂技术现状与发展建议[J]. 石油钻探技术, 2021, 49(4): 14-21. |
| JIANG Tingxue, WANG Haitao. The current status and development suggestions for Sinopec’s staged fracturing technologies of horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14-21. | |
| [70] | 刘立峰, 张士诚. 通过改变近井地应力场实现页岩储层缝网压裂[J]. 石油钻采工艺, 2011, 33(4): 71-74. |
| LIU Lifeng, ZHANG Shicheng. Net fracturing by changing the surrounding in-situ stress in shale reservoirs[J]. Oil Drilling & Production Technology, 2011, 33(4): 71-74. | |
| [71] | 蒋廷学, 苏瑗, 卞晓冰, 等. 常压页岩气水平井低成本高密度缝网压裂技术研究[J]. 油气藏评价与开发, 2019, 9(5): 78-83. |
| JIANG Tingxue, SU Yuan, BIAN Xiaobing, et al. Network fracturing technology with low cost and high density for normal pressure shale gas[J]. Petroleum Reservoir Evaluation and Development, 2019, 9(5): 78-83. | |
| [72] | 郭建春, 赵志红, 路千里, 等. 深层页岩缝网压裂关键力学理论研究进展[J]. 天然气工业, 2021, 41(1): 102-117. |
| GUO Jianchun, ZHAO Zhihong, LU Qianli, et al. Research progress in key mechanical theories of deep shale network fracturing[J]. Natural Gas Industry, 2021, 41(1): 102-117. | |
| [73] | 位建成, 单海丹, 游艳平, 等. 立体全支撑缝网压裂技术在页岩油开发中的应用[J]. 山东石油化工学院学报, 2024, 38(2): 76-82. |
| WEI Jiancheng, SHAN Haidan, YOU Yanping, et al. Application of three-dimensional full support fracture network fracture technology in shale oil development[J]. Journal of Shandong Institute of Petroleum and Chemical Technology, 2024, 38(2): 76-82. | |
| [74] | 光新军, 王敏生. 北美页岩油气重复压裂关键技术及建议[J]. 石油钻采工艺, 2019, 41(2): 224-229. |
| GUANG Xinjun, WANG Minsheng. Re-fracturing key technologies of shale oil and gas in North America and the suggestions[J]. Oil Drilling & Production Technology, 2019, 41(2): 224-229. | |
| [75] | 李彦超, 何昀宾, 肖剑锋, 等. 页岩气水平井重复压裂层段优选与效果评估[J]. 天然气工业, 2018, 38(7): 59-64. |
| LI Yanchao, HE Yunbin, XIAO Jianfeng, et al. Optimal selection and effect evaluation of re-fracturing intervals of shale-gas horizontal wells[J]. Natural Gas Industry, 2018, 38(7): 59-64. | |
| [76] | 任岚, 黄静, 赵金洲, 等. 页岩气水平井重复压裂产能数值模拟[J]. 天然气勘探与开发, 2019, 42(2): 100-106. |
| REN Lan, HUANG Jing, ZHAO Jinzhou, et al. Numerical simulation on productivity when shale-gas horizontal-well refracturing[J]. Natural Gas Exploration and Development, 2019, 42(2): 100-106. | |
| [77] | 肖博, 李双明, 蒋廷学, 等. 页岩气井暂堵重复压裂技术研究进展[J]. 科学技术与工程, 2020, 20(24): 9707-9715. |
| XIAO Bo, LI Shuangming, JIANG Tingxue, et al. Research progress on temporary-plugging refracturing technology for shale gas wells[J]. Science Technology and Engineering, 2020, 20(24): 9707-9715. | |
| [78] | 豆瑞杰, 高婷, 李强. 页岩气水平井重建井筒重复压裂技术及应用[J]. 江汉石油职工大学学报, 2025, 38(1): 37-40. |
| DOU Ruijie, GAO Ting, LI Qiang. Refracturing technology and application for reconstructed wellbores of horizontal shale gas wells[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2025, 38(1): 37-40. | |
| [79] | HUNG L V, SAN N T, SHELOMENTSEV A G, et al. Near-tip-screenout hydraulic fracturing of oil wells in the Bach Ho field, offshore Vietnam[C]//SPE Asia Pacific Oil and Gas Conference, Kuala Lumpur, 1995. Richardson: Society of Petroleum Engineers, 1995: SPE-29284-MS. |
| [80] | KHMELENKO P, SHEL E, BORONIN S, et al. Proppant packing near the fracture tip during tip screenout: Asymptotic models for pressure buildup calibrated on field data and verified with two-continua simulations[J]. SPE Journal, 2022, 27(4): 2126-2144. |
| [81] | 李颖虹. 全球页岩气无水压裂技术特点及研发策略分析[J]. 世界科技研究与发展, 2016, 38(3): 465-470. |
| LI Yinghong. Analysis on characters of global waterless fracturing technologies for shale gas and research & development strategy[J]. World Sci-Tech R & D, 2016, 38(3): 465-470. | |
| [82] | JIN F, SHUNYUAN Z, BINGSHAN L, et al. Green fracturing technology of shale gas: LPG waterless fracturing technology and its feasibility in China[C]//SPE Latin America and Caribbean Petroleum Engineering Conference, Buenos Aires, 2017. Richardson: Society of Petroleum Engineers, 2017: SPE-185500-MS. |
| [83] | ALMUBARAK M, ALMUBARAK T, NG J H, et al. Recent advances in waterless fracturing fluids: A review[C]//Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, 2020. Richardson: Society of Petroleum Engineers, 2020: SPE-202981-MS. |
| [84] | ALHARITH A, BATARSEH S, ROMAN ALERIGI D SAN, et al. Overview of recent waterless stimulation technologies[C]//Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, 2020. Richardson: Society of Petroleum Engineers, 2020: SPE-202762-MS. |
| [85] | YANG Qinghai, MENG Siwei, YU Chuan, et al. Design, optimization and application of the closed blender for CO2 waterless fracturing[C]//International Petroleum Technology Conference, Dhahran, 2020. Red Hook, NY: Curran Associates, Inc., 2020: IPTC-19770-Abstract. |
| [86] | 蒋廷学, 左罗, 黄静. 少水压裂技术及展望[J]. 石油钻探技术, 2020, 48(5): 1-8. |
| JIANG Tingxue, ZUO Luo, HUANG Jing. Development trends and prospects of less-water hydraulic fracturing technology[J]. Petroleum Drilling Techniques, 2020, 48(5): 1-8. | |
| [87] | 蒋廷学, 周珺, 廖璐璐. 国内外智能压裂技术现状及发展趋势[J]. 石油钻探技术, 2022, 50(3): 1-9. |
| JIANG Tingxue, ZHOU Jun, LIAO Lulu. Development status and future trends of intelligent fracturing technologies[J]. Petroleum Drilling Techniques, 2022, 50(3): 1-9. | |
| [88] | HE Qin, ZHONG Zhi, ALABBOODI M, et al. Artificial intelligence assisted hydraulic fracturing design in shale gas reservoir[C]//SPE Eastern Regional Meeting, Charleston, 2019. Richardson: Society of Petroleum Engineers, 2019: SPE-196608-MS. |
| [89] | LIU Chuxi, GUPTA A, ATES H, et al. Automatic calibration of complex 3D discrete fracture networks using EDFM-AI[C]//International Petroleum Technology Conference, Riyadh, 2022. Red Hook, NY: Curran Associates, Inc., 2022: IPTC-22183-MS. |
| [90] | 蒋廷学, 汪永利, 丁云宏, 等. 压裂方案经济优化的智能专家系统研究[J]. 石油学报, 2004, 25(1): 66-69. |
| JIANG Tingxue, WANG Yongli, DING Yunhong, et al. Expert system for economic optimization of hydraulic fracturing design[J]. Acta Petrolei Sinica, 2004, 25(1): 66-69. | |
| [91] | 李丽哲, 周福建, 王博. 水平井多级压裂高维参数智能优化方法研究[J]. 石油科学通报, 2023, 8(3): 347-359. |
| LI Lizhe, ZHOU Fujian, WANG Bo. Method investigation on intelligent optimization of high dimension HWMHF parameters[J]. Petroleum Science Bulletin, 2023, 8(3): 347-359. | |
| [92] | 王峻源, 王文, 弋山, 等. 页岩气水平井智能压裂监测技术研究[C]//中国石油学会天然气专业委员会. 第32届全国天然气学术年会(2020)论文集, 重庆, 2020. 成都: 西南油气田分公司开发事业部, 2020: 1555-1560. |
| WANG Junyuan, WANG Wen, YI Shan, et al. Research on intelligent fracturing monitoring technology for shale gas horizontal wells[C]//Natural Gas Professional Committee of China Petroleum Society. Proceedings of the 32nd National Natural Gas Academic Annual Conference ( 2020), Chongqing, 2020. Chongqing: Development Division of Southwest Oil and Gas Field Company, 2020: 1555-1560. | |
| [93] | 曾凌翔, 陈锐, 郑云川, 等. 页岩气水平井加砂压裂智能预警技术研究[C]//上海联合非常规能源研究中心, 上海市经济学会能源经济研究专业委员会. ECF国际页岩气论坛2021第十一届亚太页岩油气暨非常规能源峰会论文集, 上海, 2021. 成都: 川庆钻探工程有限公司井下作业公司, 2021: 62-68. |
| ZENG Lingxiang, CHEN Rui, ZHENG Yunchuan, et al. Research on intelligent early warning technology for sand fracturing in shale gas horizontal wells[C]//Shanghai United Unconventional Energy Research Center, Shanghai Economic Society Energy Economy Research Professional Committee. Proceedings of the 11th Asia Pacific Shale Oil and Gas and Unconventional Energy Summit 2021 at the ECF International Shale Gas Forum, Shanghai, 2021. Chengdu: Chuanqing Drilling Engineering Co., Ltd. Underground Operation Company, 2021: 62-68. | |
| [94] | 袁彬, 赵明泽, 孟思炜, 等. 水平井压裂多类型复杂事件智能识别与预警方法[J]. 石油勘探与开发, 2023, 50(6): 1298-1306. |
| YUAN Bin, ZHAO Mingze, MENG Siwei, et al. Intelligent identification and real-time warning method of diverse complex events in horizontal well fracturing[J]. Petroleum Exploration and Development, 2023, 50(6): 1298-1306. | |
| [95] | ALOTAIBI N, DURSUN S. Optimizing the hydraulic fracturing fluid systems using the completion and production data in Bakken shale[C]//Middle East Oil, Gas and Geosciences Show, Manama, 2023. Richardson: Society of Petroleum Engineers, 2023: SPE-213360-MS. |
| [1] | 王光付, 王海波, 郭建春, 谢凌志, 徐克, 李凤霞, 周彤, 陈世敬. 四川盆地侏罗系湖相页岩油气压裂开采技术难点与展望[J]. 石油与天然气地质, 2025, 46(6): 2026-2040. |
| [2] | 牛小兵, 樊建明, 张超, 任奕霖, 何右安, 常睿, 成良丙. 鄂尔多斯盆地庆城页岩油提高采收率实践及探索[J]. 石油与天然气地质, 2025, 46(5): 1664-1681. |
| [3] | 杨柳, 董广涛, 姜晓宇, 李明峻, 公飞, 朱凯, 裴奕杰. 裂缝-基质型刻蚀芯片的渗吸-驱替机理微流控实验[J]. 石油与天然气地质, 2025, 46(5): 1682-1699. |
| [4] | 徐田武, 李素梅, 陈湘飞, 马学峰, 邓硕, 张莹莹. 渤海湾盆地东濮凹陷全油气系统特征及其成藏模式[J]. 石油与天然气地质, 2025, 46(4): 1152-1168. |
| [5] | 陈冬霞, 王翘楚, 熊亮, 王小娟, 杨映涛, 雷文智, 张玲, 潘珂, 庞宏. 川西—川中地区陆相层系全油气系统常规和非常规有效储层成因机制与分类评价[J]. 石油与天然气地质, 2025, 46(4): 1215-1232. |
| [6] | 施振生, 周天琪, 汪鹏飞. 细粒沉积中内源组分的类型、分布及页岩油气甜点意义[J]. 石油与天然气地质, 2025, 46(3): 759-776. |
| [7] | 胡伟, 徐婷, 杨阳, 康志江, 伦增珉, 李宗宇, 赵瑞明, 张文学. 超深断控凝析气藏注气提高凝析油采收率实验评价——以塔里木盆地顺北4号断裂带为例[J]. 石油与天然气地质, 2025, 46(2): 586-598. |
| [8] | 郭旭升, 申宝剑, 王鹏威, 卢龙飞, 李倩文, 王冠平, 常佳琦, 刘伟新, 李楚雄, 何晋译. 基于源-储单元的页岩油气甜点段评价优选新思路[J]. 石油与天然气地质, 2025, 46(1): 1-14. |
| [9] | 刘忠群, 贾英, 梁彬, 陈冲, 牛骏, 郭亚兵, 于清艳, 李倩. 致密砂岩储层微观气水滞留机理及注CO2提高采收率研究[J]. 石油与天然气地质, 2025, 46(1): 261-272. |
| [10] | 胡宗全, 刘忠宝, 李倩文, 吴舟凡. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
| [11] | 孙焕泉, 杨勇, 方吉超, 凡哲元, 吴光焕, 元福卿, 杨元亮, 吴永超. 提高油气田采收率技术协同方法与应用[J]. 石油与天然气地质, 2024, 45(3): 600-608. |
| [12] | 张谦, 金之钧, 朱如凯, 刘全有, 张瑞, 王冠平, 陈万利, Littke Ralf. 岩石热解方法应用于页岩油气研究需注意的几个问题[J]. 石油与天然气地质, 2023, 44(4): 1020-1032. |
| [13] | 计秉玉, 郑松青, 顾浩. 缝洞型碳酸盐岩油藏开发技术的认识与思考[J]. 石油与天然气地质, 2022, 43(6): 1459-1465. |
| [14] | 姜在兴, 王运增, 王力, 孔祥鑫, 杨叶芃, 张建国, 薛欣宇. 陆相细粒沉积岩物质来源、搬运-沉积机制及多源油气甜点[J]. 石油与天然气地质, 2022, 43(5): 1039-1048. |
| [15] | 袁静, 周涛, 乔俊, 杨贵丽, 赵广昊. 深层砂砾岩中的深部热流体作用及其地质意义[J]. 石油与天然气地质, 2022, 43(4): 929-942. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||