1 |
焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39 (2): 207- 216.
|
|
Jiao Fangzheng . Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39 (2): 207- 216.
|
2 |
邓尚, 李慧莉, 张中培, 等. 塔里木盆地顺北及邻区主干走滑断裂差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39 (5): 878- 888.
|
|
Deng Shang , Li Huili , Zhang Zhongpei , et al. Characteristics of differe-ntial activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39 (5): 878- 888.
|
3 |
焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38 (5): 831- 839.
|
|
Jiao Fangzheng . Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38 (5): 831- 839.
|
4 |
罗明霞, 夏永涛, 邵小明, 等. 塔里木盆地顺北油气田不同层系原油地球化学特征对比及成因分析[J]. 石油实验地质, 2019, 41 (6): 849- 854.
|
|
Luo Mingxia , Xia Yongtao , Shao Xiaoming , et al. Geochemical chara-cteristics and origin of oil from different strata in Shunbei oil and gas field, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41 (6): 849- 854.
|
5 |
吴鲜, 曹自成, 路清华, 等. 塔里木盆地顺北地区白垩系原油成因类型与来源[J]. 石油实验地质, 2020, 42 (2): 255- 262.
|
|
Wu Xian , Cao Zicheng , Lu Qinghua , et al. Genetic types and sources of Cretaceous crude oil in Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42 (2): 255- 262.
|
6 |
高晓歌, 吴鲜, 洪才均, 等. 顺北油田1号断裂带奥陶系原油地球化学特征[J]. 石油地质与工程, 2018, 32 (6): 37- 40.
|
|
Gao Xiaoge , Wu Xian , Hong Caijun , et al. Geochemical characteristics of Ordovician crude oil in the No.1 fault zone of Shunbei oilfield[J]. Petroleum Geology & Engineering, 2018, 32 (6): 37- 40.
|
7 |
秦积舜, 李爱芬. 油层物理学[M]. 北京: 石油大学出版社, 2003: 16- 17.
|
|
Qin Jishun , Li Aifen . Reservoir physics[M]. Beijing: Petroleum University Press, 2003: 16- 17.
|
8 |
Danesh A . PVT and phase behaviour of petroleum reservoir fluids[J]. Developments in Petroleum Science, 1998, 11 (1): 1- 3.
|
9 |
孟凡巍, 周传明, 燕夔, 等. 通过C27/C29甾烷和有机碳同位素来判断早古生代及前寒武纪的烃源岩的生物来源[J]. 微体古生物学报, 2006, 23 (1): 51- 56.
|
|
Meng Fanwei , Zhou Chuanming , Yan Kui , et al. Biological origin of early oalaeozoic and precambrian hydrocarbon source rocks based on C27/C29 sterane ratio and organic carbon isotope[J]. Acta Micropalaeontologica Sinica, 2006, 23 (1): 51- 56.
|
10 |
边立曾, 张水昌, 梁狄刚, 等. 塔里木盆地晚奥陶世古海藻果实状化石及塔中油田生物母质特征[J]. 微体古生物学报, 2003, 20 (1): 89- 96.
|
|
Bian Lizeng , Zhang Shuichang , Liang Digang , et al. Fruit-like fossils of ancient sea weeds from late Ordovician, central area of the tarim basin and the charaters of bioprecursors of Tazhong oil and gas field[J]. Acta Micropalaeontologica Sinica, 2003, 20 (1): 89- 96.
|
11 |
Grantham P J . The occurrence of unusual C27 and C29 sterane predominances in two types of Oman crude oil[J]. Organic Geochemistry, 1986, 9 (1): 1- 10.
doi: 10.1016/0146-6380(86)90077-X
|
12 |
Derenne S , Largeau C , Berkaloff C , et al. Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotum[J]. Photochemistry, 1992, 31 (6): 1923- 1929.
doi: 10.1016/0031-9422(92)80335-C
|
13 |
Milner C W D , Rogers M A , Evans C R . Petroleum transformations in reservoirs[J]. Journal of Geochemical Exploration, 1977, 7 (2): 101- 153.
|
14 |
Orozco D S , Horsfield B , Di Primio R . Influence of maturity on distributions of benzo- and dibenzothiophenes in Tithonian source rocks and crude oils, Sonda de Campeche, Mexico[J]. Organic Geochemistry, 1998, 28 (7-8): 423- 439.
doi: 10.1016/S0146-6380(98)00009-6
|
15 |
Fan Pu , Philp R P , Li Zhenxi , et al. Geochemical characteristics of aromatic hydrocarbons of crude oils and source rocks from different sedimentary environments[J]. Organic Geochemistry, 1990, 16 (1-3): 427- 435.
doi: 10.1016/0146-6380(90)90059-9
|
16 |
李永福, 何生. 原油芳烃中三芴系列化合物的环境指示作用[J]. 地球化学, 2008, 37 (1): 45- 50.
|
|
Li Yongfu , He Sheng . Geochemical characteristics of dibenzothiophene, dibenzofuran and fluorine and their homologues and their environmental indication[J]. Geochimiac, 2008, 37 (1): 45- 50.
|
17 |
Radke M . Application of aromatic-compounds as maturity indication in source rocks and crude oils[J]. Marine and Petroleum Geology, 1988, 5 (3): 224- 236.
doi: 10.1016/0264-8172(88)90003-7
|
18 |
朱心健, 陈践发, 伍建军, 等. 塔里木盆地台盆区古生界原油碳同位素组成及油源探讨[J]. 石油勘探与开发, 2017, 44 (6): 997- 1003.
|
|
Zhu Xinjian , Chen Jianfa , Wu Jianjun , et al. Carbon isotopic compositions and origin of Paleozoic crude oil in the platform region of Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44 (6): 997- 1003.
|
19 |
常象春, 王铁冠, 李启明, 等. 哈拉哈塘凹陷新垦区块奥陶系油气成藏的地球化学证据[J]. 中国石油大学学报(自然科学版), 2013, 37 (3): 44- 49.
|
|
Chang Xiangchum , Wang Tieguan , Li Qiming , et al. Hydrocarbon entrapment and accumulation for Ordovician reservoirs from Xinken block of Halahatang depression as constrained from oil geochemistry[J]. Journal of China University of Petroleum, 2013, 37 (3): 44- 49.
|
20 |
王传刚, 王铁冠, 何发歧, 等. 塔河油田原油稳定碳同位素特征及其成藏意义[J]. 新疆石油地质, 2005, 26 (2): 155- 157.
|
|
Wang Chuangang , Wang Tieguan , He Faqi , et al. Stable carbon isotope and its significance in hydrocarbon accumulation in Tahe oilfield, Tarim Basin[J]. Xinjiang Petroleum Geology, 2005, 26 (2): 155- 157.
|
21 |
Dahl J E , Moldowan J M , Peter K E , et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399 (5): 54- 56.
|
22 |
马安来, 金之钧, 朱翠山, 等. 塔里木盆地中深1C井原油高聚硫代金刚烷及金刚烷硫醇的检出及意义[J]. 中国科学:地球科学, 2018, 48 (10): 1312- 1323.
|
|
Ma Anlai , Jin Zhijun , Zhu Cuishan , et al. Detection and significance of higher thiadiamondoids and diamondoidthiols in oil from the Zhongshen 1C well of the Tarim Basin, NW China[J]. Science China Earth Sciences, 2018, 48 (10): 1312- 1323.
|
23 |
马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018, 39 (1): 42- 53.
|
|
Ma Anlai , Jin Zhijun , Zhu Cuishan , et al. Detcction and research significance of thiadiamondoids from crude oil in Well Shunnan 1, Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39 (1): 42- 53.
|
24 |
Mache1 H G . Bacteria1 and thermochemica1 sulfate reduction in diagenetic settings old and new insights[J]. Sedimentary Geology, 2001, 140 (1-2): 143- 175.
doi: 10.1016/S0037-0738(00)00176-7
|
25 |
Worden R H , Smalley P C . H2S-producing reactions in deep carbonate gas reservoirs:Khuff Formation, Abu Dhabi[J]. Chemical Geology, 1996, 133 (1-4): 157- 171.
doi: 10.1016/S0009-2541(96)00074-5
|
26 |
Cai Chunfang , Wo Men R H , Wang Qinghua , et a1 . Chemical and isotopic evidence for secondary alteration of natural gases in the Hetianhe field, Bachu Uplift of the Tarim Basin[J]. Organic Geochemistry, 2002, 33 (12): 1415- 1427.
doi: 10.1016/S0146-6380(02)00111-0
|
27 |
张建勇, 刘文汇, 腾格尔. TSR对气态烃组分及碳同位素组成的影响-高温高压模拟实验的证据[J]. 石油实验地质, 2012, 34 (1): 66- 77.
|
|
Zhang Jianyong , Liu Wenhui , Teng Geer . Influences of TSR on gaseous hydrocarbon components and carbon isotopes:revelations from high-temperature and high-pressure simulation experiments[J]. Petroleum Geology& Experiment, 2012, 34 (1): 66- 77.
|
28 |
Zhang Shuichang , Zhu Guangyou , Liang Yingbo , et al. Geochemical characteristics of the Zhaolanzhuang sour gas accumulation and thermochemical sulfate reduction in the Jixian Sag of Bohai Bay Basin[J]. Organic Geochemistry, 2005, 36 (12): 1717- 1730.
doi: 10.1016/j.orggeochem.2005.08.015
|
29 |
马安来, 金之钧, 朱翠山, 等. 塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用:来自分子标志物的证据[J]. 石油与天然气地质, 2018, 39 (4): 730- 737.
|
|
Ma Anlai , Jin Zhijun , Zhu Cuishan , et al. Effect of TSR on the crude oil in Ordovician reservoirs of Well Luosi-2 from Maigaiti Slope, Tarim Basin:Evidences from molecular markers[J]. Oil & Gas Geology, 2018, 39 (4): 730- 737.
|
30 |
马安来, 金之钧, 李慧莉, 等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学, 2020, 45 (5): 1737- 1753.
|
|
Ma Anlai , Jin Zhijun , Li huili , et al. Secondary plteration and preservation of ultra-deep ordovician oil reservoirs of north Shuntuoguole Area of Tarim Basin, NW China[J]. Earth Science, 45 (5): 1737- 1753.
|
31 |
马安来, 张水昌, 张大江, 等. 生物降解原油地球化学研究新进展[J]. 地球科学进展, 2005, 20 (4): 449- 454.
|
|
Ma Anlai , Zhang Shuichang , Zhang Dajiang , et al. The advances in the geochemistry of the biodegraded oil[J]. Advances in Earth Science, 2005, 20 (4): 449- 454.
|