石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (1): 138-149.doi: 10.11743/ogg20230111
黄越义1,2,3(), 廖玉宏1,2(), 陈承声1,2, 史树勇1,2, 王云鹏1,2, 彭平安1,2
收稿日期:
2022-06-06
修回日期:
2022-11-16
出版日期:
2023-01-14
发布日期:
2023-01-13
通讯作者:
廖玉宏
E-mail:huangyy@gig.ac.cn;liaoyh@gig.ac.cn
第一作者简介:
黄越义(1992—),男,博士研究生,有机地球化学。E?mail: 基金项目:
Yueyi HUANG1,2,3(), Yuhong LIAO1,2(), Chengsheng CHEN1,2, Shuyong SHI1,2, Yunpeng WANG1,2, Ping’an PENG1,2
Received:
2022-06-06
Revised:
2022-11-16
Online:
2023-01-14
Published:
2023-01-13
Contact:
Yuhong LIAO
E-mail:huangyy@gig.ac.cn;liaoyh@gig.ac.cn
摘要:
塔里木盆地顺南1井和顺南4井位置相近且地质背景相似,埋藏史、热演化史和压力史也基本相似,显示两井的原油都曾遭受过严重的热裂解,但油气相态差异显著,顺南1井为凝析气藏伴生凝析油,顺南4井为典型干气藏。顺南1井和顺南4井的油气相态演化过程以及导致这种相态差异的原因尚待解析。结合原油的黄金管封闭体系热模拟实验数据与实际地质背景资料,利用PetroMod软件和PVTsim软件完成了塔里木盆地顺南1井和顺南4井油气相态演化的数值模拟和预测,并与现今烃流体的组成和相态进行了比较。研究结果表明:顺南1井鹰山组油气藏在34 Ma由液相进入凝析气相,直到现今仍保持凝析气相,其凝析油正构烷烃摩尔浓度与碳数成非常好的线性关系,指示其未曾受气侵、蒸发分馏或多期充注等的影响;而顺南4井鹰山组油气藏在49 Ma由液相进入凝析气相,并很可能在22~10 Ma(中新世)遭受了来自寒武系烃源岩的过成熟干气的气侵作用;气侵通道应该为顺南地区发育的多条北东向断裂,气侵强度由东向西逐渐减弱,到顺南1井所在区域时已无明显气侵作用,这是顺南1井和顺南4井在组分和相态上存在明显差异的主要原因。
中图分类号:
1 | 张水昌, 朱光有, 杨海军, 等. 塔里木盆地北部奥陶系油气相态及其成因分析[J]. 岩石学报, 2011, 27(8): 2447-2460. |
ZHANG Shuichang, ZHU Guangyou, YANG Haijun, et al. The phases of Ordovician hydrocarbon and their origin in the Tabei uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2447-2460. | |
2 | 陈绪云, 朱秀香, 曹自成, 等. 顺托果勒地区及周缘奥陶系油气藏分布特征与成因浅析[J]. 新疆地质, 2017, 35(1): 74-78. |
CHEN Xuyun, ZHU Xiuxiang, CAO Zicheng, et al. Distribution characteristics and origin of Ordovician oil and gas reservoirs in Shuntuoguole region and its periphery[J]. Xinjiang Geology, 2017, 35(1): 74-78. | |
3 | DANESH A. PVT and phase behaviour of petroleum reservoir fluids[M]. Amsterdam: Elsevier, 1998. |
4 | VAN GRAAS G W, ELIN GILJE A, ISOM T P, et al. The effects of phase fractionation on the composition of oils, condensates and gases[J]. Organic Geochemistry, 2000, 31(12): 1419-1439. |
5 | DI PRIMIO R. Unraveling secondary migration effects through the regional evaluation of PVT data: A case study from Quadrant 25, NOCS[J]. Organic Geochemistry, 2002, 33(6): 643-653. |
6 | CONNAN J. Biodegradation of crude oils in reservoirs[M]//BROOKS J, WELTE D, ed. Advances in Petroleum Geochemistry. London: Academic Press, 1984: 299-335. |
7 | LARTER S, HUANG Haiping, ADAMS J, et al. The controls on the composition of biodegraded oils in the deep subsurface: Part II-Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction: Part I of this study was published in Organic Chemistry in 2003 (Larteret al., 2003)[J]. AAPG Bulletin, 2006, 90(6): 921-938. |
8 | PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide[M]. Cambridge: Cambridge University Press, 2004. |
9 | LARTER S, WILHELMS A, HEAD I, et al. The controls on the composition of biodegraded oils in the deep subsurface—part 1: Biodegradation rates in petroleum reservoirs[J]. Organic Geochemistry, 2003, 34(4): 601-613. |
10 | HILL R J, TANG Yongchun, KAPLAN I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34(12): 1651-1672. |
11 | WAPLES D W. The kinetics of in-reservoir oil destruction and gas formation: Constraints from experimental and empirical data, and from thermodynamics[J]. Organic Geochemistry, 2000, 31(6): 553-575. |
12 | TIAN Hui, XIAO Xianming, WILKINS R W T, et al. An experimental comparison of gas generation from three oil fractions: Implications for the chemical and stable carbon isotopic signatures of oil cracking gas[J]. Organic Geochemistry, 2012, 46: 96-112. |
13 | THOMPSON K F M. Fractionated aromatic petroleums and the generation of gas-condensates[J]. Organic Geochemistry, 1987, 11(6): 573-590. |
14 | THOMPSON K F M. Gas-condensate migration and oil fractionation in deltaic systems[J]. Marine and Petroleum Geology, 1988, 5(3): 237-246. |
15 | MEULBROEK P, CATHLES L III, WHELAN J. Phase fractionation at South Eugene Island Block 330[J]. Organic Geochemistry, 1998, 29(1/3): 223-239. |
16 | LOSH S. Oil migration in a major growth fault; structural analysis of the Pathfinder core, South Eugene Island Block 330, offshore Louisiana[J]. AAPG Bulletin, 1998, 82(9): 1694-1710. |
17 | LOSH S, CATHLES L, MEULBROEK P. Gas washing of oil along a regional transect, offshore Louisiana[J]. Organic Geochemistry, 2002, 33(6): 655-663. |
18 | SU Ao, CHEN Honghan, ZHAO Jianxin, et al. Natural gas washing induces condensate formation from coal measures in the Pinghu Slope Belt of the Xihu Depression, East China Sea Basin: Insights from fluid inclusion, geochemistry, and rock gold-tube pyrolysis[J]. Marine and Petroleum Geology, 2020, 118: 104450. |
19 | ZHU Guangyou, LI Jingfei, CHI Linxian, et al. The influence of gas invasion on the composition of crude oil and the controlling factors for the reservoir fluid phase[J]. Energy & Fuels, 2020, 34(3): 2710-2725. |
20 | MACHEL H G. Gas souring by thermochemical sulfate reduction at 140°C: Discussion[J]. AAPG Bulletin, 1998, 82(10): 1870-1873. |
21 | MACHEL H G. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights[J]. Sedimentary Geology, 2001, 140(1/2): 143-175. |
22 | XIAO Qilin, SUN Yongge, CHAI Pingxia. Experimental study of the effects of thermochemical sulfate reduction on low molecular weight hydrocarbons in confined systems and its geochemical implications[J]. Organic Geochemistry, 2011, 42(11): 1375-1393. |
23 | DI PRIMIO R, DIECKMANN V, MILLS N. PVT and phase behaviour analysis in petroleum exploration[J]. Organic Geochemistry, 1998, 29(1/3): 207-222. |
24 | PEDERSEN K S, CHRISTENSEN P L. Fluids in hydrocarbon basins[J]. Reviews in Mineralogy and Geochemistry, 2007, 65(1): 241-258. |
25 | DI PRIMIO R, HORSFIELD B. From petroleum-type organofacies to hydrocarbon phase prediction[J]. AAPG Bulletin, 2006, 90(7): 1031-1058. |
26 | DI PRIMIO R, SKEIE J E. Development of a compositional kinetic model for hydrocarbon generation and phase equilibria modelling: A case study from Snorre Field, Norwegian North Sea[J]. Geological Society, London, Special Publications, 2004, 237(1): 157-174. |
27 | KUHN P, DI PRIMIO R, HORSFIELD B. Bulk composition and phase behaviour of petroleum sourced by the Bakken Formation of the Williston Basin[J]. Geological Society, London, Petroleum Geology Conference Series, 2010, 7(1): 1065-1077. |
28 | TAN Jingqiang, HORSFIELD B, MAHLSTEDT N, et al. Physical properties of petroleum formed during maturation of Lower Cambrian shale in the upper Yangtze Platform, South China, as inferred from PhaseKinetics modelling[J]. Marine and Petroleum Geology, 2013, 48: 47-56. |
29 | HAN Shuangbiao, HORSFIELD B, ZHANG Jinchuan, et al. Hydrocarbon generation kinetics of lacustrine Yanchang shale in southeast Ordos Basin, North China[J]. Energy & Fuels, 2014, 28(9): 5632-5639. |
30 | HORSFIELD B, DI PRIMIO R. Fluid compositional prediction in conventional and unconventional petroleum systems[C]//SPE Unconventional Resources Conference, The Woodlands, 2014. London: SPE, 2014: SPE-169016-MS. |
31 | ABBASSI S, EDWARDS D S, GEORGE S C, et al. Petroleum potential and kinetic models for hydrocarbon generation from the Upper Cretaceous to Paleogene Latrobe Group coals and shales in the Gippsland Basin, Australia[J]. Organic Geochemistry, 2016, 91: 54-67. |
32 | YANG S, HORSFIELD B, MAHLSTEDT N, et al. On the primary and secondary petroleum generating characteristics of the Bowland Shale, northern England[J]. Journal of the Geological Society, 2016, 173(2): 292-305. |
33 | KUSKE S, HORSFIELD B, JWEDA J, et al. Geochemical factors controlling the phase behavior of Eagle Ford Shale petroleum fluids[J]. AAPG Bulletin, 2019, 103(4): 835-870. |
34 | CHEN Chengsheng, WANG Yunpeng, BEAGLE J R, et al. Reconstruction of the evolution of deep fluids in light oil reservoirs in the Central Tarim Basin by using PVT simulation and basin modeling[J]. Marine and Petroleum Geology, 2019, 107: 116-126. |
35 | 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51. |
QI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51. | |
36 | 甄素静, 汤良杰, 李宗杰, 等. 塔中北坡顺南地区走滑断裂样式、变形机理及石油地质意义[J]. 天然气地球科学, 2015, 26(12): 2315-2324. |
ZHEN Sujing, TANG Liangjie, LI Zongjie, et al. The characteristics, formation and petroleum geology significance of the strike-slip fault system in Shunnan area, northern slope of Tazhong Uplift[J]. Natural Gas Geoscience, 2015, 26(12): 2315-2324. | |
37 | 黄太柱. 塔里木盆地塔中北坡构造解析与油气勘探方向[J]. 石油实验地质, 2014, 36(3): 257-267. |
HUANG Taizhu. Structural interpretation and petroleum exploration targets in northern slope of middle Tarim Basin[J]. Petroleum Geology and Experiment, 2014, 36(3): 257-267. | |
38 | 黄诚, 云露, 曹自成, 等. 塔里木盆地顺北地区中-下奥陶统 “断控” 缝洞系统划分与形成机制[J]. 石油与天然气地质, 2022, 43(1): 54-68. |
HUANG Cheng, YUN Lu, CAO Zicheng, et al. Division and formation mechanism of fault-controlled fracture-vug system of the Middle-to-Lower Ordovician, Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 54-68. | |
39 | 林波, 云露, 李海英, 等. 塔里木盆地顺北5号走滑断层空间结构及其油气关系[J]. 石油与天然气地质, 2021, 42(6): 1344-1353, 1400. |
LIN Bo, YUN Lu, LI Haiying, et al. Spatial structure of Shunbei No.5 strike-slip fault and its relationship with oil and gas reservoirs in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42(6): 1344-1353, 1400. | |
40 | 胡文革. 塔里木盆地顺北地区不同断裂带油气充注能力表征研究与实践[J]. 石油与天然气地质, 2022, 43(3): 528-541. |
HU Wenge. Study and practice of characterizing hydrocarbon charging capacity of different fault zones, Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(3): 528-541. | |
41 | 马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018, 39(1): 42-53. |
MA Anlai, JIN Zhijun, ZHU Cuishan. Detection and research significance of thiadiamondoids from crude oil in Well Shunnan 1, Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(1): 42-53. | |
42 | 顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12. |
GU Yi, HUANG Jiwen, JIA Cunshan, et al. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology and Experiment, 2020, 42(1): 1-12. | |
43 | 黄越义, 廖玉宏, 刘卫民, 等. 黄金管封闭体系热模拟实验中两种液态烃收集方法对比及其对相态特征的影响[J]. 地球化学, 2020, 49(5): 528-538. |
HUANG Yueyi, LIAO Yuhong, LIU Weimin, et al. Comparison of two liquid hydrocarbon collection methods in gold tube pyrolysis and their influence on hydrocarbon phase state characteristics[J]. Geochimica, 2020, 49(5): 528-538. | |
44 | 王铁冠, 宋到福, 李美俊, 等. 塔里木盆地顺南-古城地区奥陶系鹰山组天然气气源与深层天然气勘探前景[J]. 石油与天然气地质, 2014, 35(6): 753-762. |
WANG Tieguan, SONG Daofu, LI Meijun, et al. Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan-Gucheng region, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 753-762. | |
45 | 庄新兵, 顾忆, 邵志兵, 等. 塔里木盆地地温场对油气成藏过程的控制作用——以古城墟隆起为例[J]. 石油学报, 2017, 38(5): 502-511. |
ZHUANG Xinbing, GU Yi, SHAO Zhibing, et al. Control effect of geothermal field on hydrocarbon accumulation process in Tarim Basin: A case study of Guchengxu Uplift[J]. Acta Petrolei Sinica, 2017, 38(5): 502-511. | |
46 | NI Zhiyong, WANG Tieguan, LI Meijun, et al. Natural gas characteristics, fluid evolution, and gas charging time of the Ordovician reservoirs in the Shuntuoguole region, Tarim Basin, NW China[J]. Geological Journal, 2018, 53(3): 947-959. |
47 | 鲁子野. 塔里木盆地塔中北坡奥陶系古流体活动和油气成藏研究[D]. 武汉: 中国地质大学(武汉), 2018. |
LU Ziye. Paleo-fluids and hydrocarbon accumulation studies in the Ordovician carbonate reservoirs of the Shunnan and Guchengxu areas, Tarim Basin[D]. Wuhan: China University of Geosciences(Wuhan), 2018. | |
48 | 刘雨晨. 塔里木盆地顺托果勒低隆起及周缘热演化研究[D]. 北京: 中国石油大学(北京), 2019. |
LIU Yuchen. Thermal evolution of the Shuntuoguole low uplift and the surrounding areas in Tarim Basin[D]. Beijing: China University of Petroleum(Beijing), 2019. | |
49 | 贾京坤. 塔里木盆地顺托果勒低隆起奥陶系地层压力演化研究[D]. 北京: 中国石油大学(北京), 2019. |
JIA Jingkun. Study on pore-fluid pressure of the Ordovician carbonate reservoir in Shuntuoguole low-uplift, Tarim Basin[D]. Beijing: China University of Petroleum(Beijing), 2019. | |
50 | 刘雨晨, 邱楠生, 常健, 等. 碳酸盐团簇同位素在沉积盆地热演化中的应用——以塔里木盆地顺托果勒地区为例[J]. 地球物理学报, 2020, 63(2): 597-611. |
LIU Yuchen, QIU Nansheng, CHANG Jian, et al. Application of clumped isotope thermometry to thermal evolution of sedimentary basins: A case study of Shuntuoguole area in Tarim Basin[J]. Chinese Journal of Geophysics, 2020, 63(2): 597-611. | |
51 | 马安来, 何治亮, 云露, 等. 塔里木盆地顺北地区奥陶系超深层天然气地球化学特征及成因[J]. 天然气地球科学, 2021, 32(7): 1047-1060. |
MA Anlai, HE Zhiliang, YUN Lu, et al. The geochemical characteristics and origin of Ordovician ultra-deep natural gas in the North Shuntuoguole area, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2021, 32(7): 1047-1060. | |
52 | MANGO F D. The origin of light hydrocarbons[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1265-1277. |
53 | 李剑, 李志生, 王晓波, 等. 多元天然气成因判识新指标及图版[J]. 石油勘探与开发, 2017, 44(4): 503-512. |
LI Jian, LI Zhisheng, WANG Xiaobo, et al. New indexes and charts for genesis identification of multiple natural gases[J]. Petroleum Exploration and Development, 2017, 44(4): 503-512. | |
54 | ZHOU Xiaoxiao, Xiuxiang LÜ, ZHU Guangyou, et al. Origin and formation of deep and superdeep strata gas from Gucheng-Shunnan block of the Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2019, 177: 361-373. |
55 | 云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797. |
YUN Lu, CAO Zicheng. Hydrocarbon enrichment pattern and exploration potential of the Ordovician in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 788-797. | |
56 | 鲁子野, 陈红汉, 云露, 等. 塔中顺南缓坡奥陶系热流体活动与天然气成藏的耦合关系[J]. 地球科学, 2016, 41(3): 487-498. |
LU Ziye, CHEN Honghan, YUN Lu, et al. The coupling relationship between hydrothermal fluids and the hydrocarbon gas accumulation in Ordovician of Shunnan gentle slope, northern slope of Tazhong Uplift[J]. Earth Science, 2016, 41(3): 487-498. | |
57 | 马安来, 林会喜, 云露, 等. 塔里木盆地顺北地区奥陶系超深层原油金刚烷化合物分布及意义[J]. 天然气地球科学, 2021, 32(3): 334-346. |
MA Anlai, LIN Huixi, YUN Lu, et al. Characteristics of diamondoids in oils from the ultra-deep Ordovician in the North Shuntuoguole area in Tarim Basin, NW China[J]. Natural Gas Geoscience, 2021, 32(3): 334-346. | |
58 | KISSIN Y V. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes[J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2445-2457. |
59 | 李映涛, 叶宁, 袁晓宇, 等. 塔里木盆地顺南4井中硅化热液的地质与地球化学特征[J]. 石油与天然气地质, 2015, 36(6): 934-944. |
LI Yingtao, YE Ning, YUAN Xiaoyu, et al. Geological and geochemical characteristics of silicified hydrothermal fluids in Well Shunnan 4, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(6): 934-944. | |
60 | 刘军, 陈强路, 王鹏, 等. 塔里木盆地顺南地区中下奥陶统碳酸盐岩储层特征与主控因素[J]. 石油实验地质, 2021, 43(1): 23-33. |
LIU Jun, CHEN Qianglu, WANG Peng, et al. Characteristics and main controlling factors of carbonate reservoirs of Middle-Lower Ordovician, Shunnan area, Tarim Basin[J]. Petroleum Geology and Experiment, 2021, 43(1): 23-33. | |
61 | YOU Donghua, HAN Jun, HU Wenxuan, et al. Characteristics and formation mechanisms of silicified carbonate reservoirs in well SN4 of the Tarim Basin[J]. Energy Exploration & Exploitation, 2018, 36(4): 820-849. |
62 | 何光玉, 曹自成, 姚泽伟, 等. 塔里木盆地古城地区古生界垒-扭叠合复合断层-裂缝体模型[J]. 石油与天然气地质, 2021, 42(3): 587-594. |
HE Guangyu, CAO Zicheng, YAO Zewei, et al. Paleozoic horst-twist superimposed fault-fracture body model in Gucheng area of Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3): 587-594. | |
63 | 朱光有, 李婧菲, 张志遥. 深层油气相态多样性成因与次生地球化学作用强度评价——以塔里木盆地海相油气为例[J/OL]. 地球科学: 1-17[2022-06-01]. . |
ZHU Guangyou, LI Jingfei, ZHANG Zhiyao. Origin of deep oil and gas phase state diversity and evaluation of secondary geochemical intensity——A case study of marine oil and gas in Tarim Basin[J/OL]. Earth Science: 1-17[2022-06-01]. . | |
64 | 李慧莉, 尤东华, 韩俊, 等. 塔里木盆地顺南—古城地区方解石脉流体来源及其对油气成藏的启示[J]. 天然气地球科学, 2020, 31(8): 1111-1125. |
LI Huili, YOU Donghua, HAN Jun, et al. The fluid origin of calcite veins in Shunnan-Gucheng area of Tarim Basin and its implications for hydrocarbon accumulation[J]. Natural Gas Geoscience, 2020, 31(8): 1111-1125. | |
65 | 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. |
JIAO Fangzheng. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 黎瑞, 杨娇, 柴愈坤, 王华, 戴建文, 邓永辉, 孙爽, 马肖琳, 田腾飞. 大角度波浪控制下的浪成砂坝新模式[J]. 石油与天然气地质, 2024, 45(2): 530-541. |
[8] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[9] | 侯佳凯, 张志遥, 师生宝, 朱光有. 全二维气相色谱技术在石油地球化学中的应用进展[J]. 石油与天然气地质, 2024, 45(2): 565-580. |
[10] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[11] | 张宏国, 杨海风, 宿雯, 徐春强, 黄志, 程燕君. 源外层系油气运聚关键环节研究与评价方法[J]. 石油与天然气地质, 2024, 45(1): 281-292. |
[12] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[13] | 王永诗, 巩建强, 陈冬霞, 邱贻博, 茆书巍, 雷文智, 杨怀宇, 王翘楚. 渤海湾盆地东营凹陷盐家地区深层砂砾岩油气藏相态演化及成藏过程[J]. 石油与天然气地质, 2023, 44(5): 1159-1172. |
[14] | 史玉玲, 龙祖烈, 张向涛, 温华华, 马晓楠. 珠江口盆地恩平凹陷恩平17洼油气动态成藏过程[J]. 石油与天然气地质, 2023, 44(5): 1279-1289. |
[15] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||