石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (4): 979-991.doi: 10.11743/ogg20240406
叶玥豪1(), 陈伟1, 汪华2(), 宋金民1, 明盈2, 戴鑫2, 李智武1, 孙豪飞2, 马小刚1, 刘婷婷3, 唐辉4, 刘树根1,5
收稿日期:
2023-12-12
修回日期:
2024-05-21
出版日期:
2024-09-05
发布日期:
2024-09-05
通讯作者:
汪华
E-mail:bestone86@163.com;wanghua@petrochina.com.cn
第一作者简介:
叶玥豪(1986—),男,讲师,非常规油气地质。E‑mail: bestone86@163.com。
基金项目:
Yuehao YE1(), Wei CHEN1, Hua WANG2(), Jinmin SONG1, Ying MING2, Xin DAI2, Zhiwu LI1, Haofei SUN2, Xiaogang MA1, Tingting LIU3, Hui TANG4, Shugen LIU1,5
Received:
2023-12-12
Revised:
2024-05-21
Online:
2024-09-05
Published:
2024-09-05
Contact:
Hua WANG
E-mail:bestone86@163.com;wanghua@petrochina.com.cn
摘要:
四川盆地开江-梁平海槽内上二叠统大隆组发育海相黑色页岩。近期LY1,DY1和HY1井在大隆组勘探发现高产页岩气,显示川北大隆组海相页岩气勘探潜力巨大,研究其页岩储层特征与控制因素具有非常重要的意义。以DY1井为研究对象,开展了大隆组页岩有机地球化学、脆性矿物含量、孔隙类型和孔隙结构等方面研究,探讨其储层特征与控制因素。结果表明:①大隆组黑色页岩为深水陆棚沉积,主要发育硅质页岩和混合质页岩岩相,脆性矿物含量高;②黑色页岩有机质丰度高,总有机碳含量(TOC)平均可达7.84 %,有机质类型为Ⅱ1-Ⅱ2型,孔隙度较高,平均可达5.78 %,储集空间以有机质孔为主,微孔峰值高;③热演化程度、有机质类型和丰度控制黑色页岩孔隙发育程度,碳酸盐矿物对孔隙发育起破坏作用。
中图分类号:
图3
四川盆地川北地区DY1井大隆组黑色页岩特征a. 含生屑泥晶灰岩,埋深4 302.43 m,单偏光显微照片;b. 黑色含生屑钙质泥岩,见粒序,埋深4 328.60 m,单偏光显微照片;c. 黑色含生屑钙质泥岩,埋深4 329.25 m,单偏光显微照片;d. 黑色含晶粒状白云质泥岩,埋深4 331.73 m,单偏光显微照片;e、黑色含生屑泥岩,埋深4 332.86 m,单偏光显微照片;f. 黑色含少量生屑泥岩,埋深4 337.25 m,单偏光显微照片;g. 灰色含生屑泥晶灰岩,埋深4 304.10 m,岩心照片;h.黑色硅质页岩,埋深4 434.70 m,岩心照片;i. 黑色含钙质页岩,埋深4 332.50 m,岩心照片"
1 | 梁狄刚, 郭彤楼, 边立曾, 等. 中国南方海相生烃成藏研究的若干新进展 (三) 南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质, 2009, 14(2): 1-19. |
LIANG Digang, GUO Tonglou, BIAN Lizeng, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 3): Controlling factors on the sedimentary facies and development of Palaeozoic marine source rocks[J]. Marine Origin Petroleum Geology, 2009, 14(2): 1-19. | |
2 | 董大忠, 梁峰, 管全中, 等. 四川盆地五峰组-龙马溪组页岩气优质储层发育模式及识别评价技术[J]. 天然气工业, 2022, 42(8): 96-111. |
DONG Dazhong, LIANG Feng, GUAN Quanzhong, et al. Development model and identification evaluation technology of Wufeng-Longmaxi Formation quality shale gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 96-111. | |
3 | 王鹏威, 刘忠宝, 李雄, 等. 川东红星地区上二叠统吴家坪组页岩发育特征及其页岩气富集意义[J]. 石油与天然气地质, 2022, 43(5): 1102-1114. |
WANG Pengwei, LIU Zhongbao, LI Xiong, et al. Development of the Upper Permian Wujiaping shale in Hongxing area, eastern Sichuan Basin, and its significance to shale gas enrichment[J]. Oil & Gas Geology, 2022, 43(5): 1102-1114. | |
4 | 杨雨, 汪华, 谢继容, 等. 页岩气勘探新领域: 四川盆地开江-梁平海槽二叠系海相页岩气勘探突破及展望[J]. 天然气工业, 2023, 43(11): 1-11. |
YANG Yu, WANG Hua, XIE Jirong, et al. Exploration breakthroughs and prospect of Permian marine shale gas in the Kaijiang-Liangping Trough in the Sichuan Basin[J]. Natural Gas Industry, 2023, 43(11): 1-11. | |
5 | 胡东风, 魏志红, 王威, 等. 四川盆地东北部雷页1井上二叠统大隆组页岩气勘探突破及其启示[J]. 天然气工业, 2023, 43(11): 28-39. |
HU Dongfeng, WEI Zhihong, WANG Wei, et al. Breakthrough of shale gas exploration in Dalong Formation of Upper Permian by Well Leiye 1 in the northeastern Sichuan Basin and its implications[J]. Natural Gas Industry, 2023, 43(11): 28-39. | |
6 | 刘树根, 王一刚, 孙玮, 等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报(自然科学版), 2016, 43(1): 1-23. |
LIU Shugen, WANG Yigang, SUN Wei, et al. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2016, 43(1): 1-23. | |
7 | 王一刚, 文应初, 洪海涛, 等. 四川盆地开江-梁平海槽内发现大隆组[J]. 天然气工业, 2006(9): 32-36. |
WANG Yigang, WEN Yingchu, HONG Haitao, et al. Dalong Formation found in Kaijiang-Liangping ocenic trough in the Sichuan Basin[J]. Natural Gas Industry, 2006(9): 32-36. | |
8 | 王明筏, 文虎, 倪楷, 等. 四川盆地北部大隆组页岩气地质条件及勘探潜力[J]. 西南石油大学学报(自然科学版), 2023, 45(1): 13-23. |
WANG Mingfa, WEN Hu, NI Kai, et al. Geological conditions and exploration potential of shale gas in Dalong Formation in northern Sichuan Basin[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(1): 13-23. | |
9 | 胡德高, 周林, 包汉勇, 等. 川东红星地区HY1井二叠系页岩气勘探突破及意义[J]. 石油学报, 2023, 44(2): 241-252. |
HU Degao, ZHOU Lin, BAO Hanyong, et al. Breakthrough and significance of Permian shale gas exploration of Well HY1 in Hongxing area, eastern Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(2): 241-252. | |
10 | 邹才能, 董大忠, 熊伟, 等. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
ZOU Caineng, DONG Dazhong, XIONG Wei, et al. Advances, challenges, and countermeasures in shale gas exploration of underexplored plays,sequences and new types in China[J]. Oil & Gas Geology, 2024, 45(2): 309-326. | |
11 | 梁峰, 姜巍, 戴赟, 等. 四川盆地威远-资阳地区筇竹寺组页岩气富集规律及勘探开发潜力[J]. 天然气地球科学, 2022, 33(5): 755-763. |
LIANG Feng, JIANG Wei, DAI Yun, et al. Enrichment law and resource potential of shale gas of Qiongzhusi Formation in Weiyuan-Ziyang areas, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(5): 755-763. | |
12 | 赵培荣, 高波, 郭战峰, 等. 四川盆地上二叠统海陆过渡相和深水陆棚相页岩气的勘探潜力[J]. 石油实验地质, 2020, 42(3): 335-344. |
ZHAO Peirong, GAO Bo, GUO Zhanfeng. Exploration potential of marine-continental transitional and deep-water shelf shale gas in Upper Permian, Sichuan Basin[J]. Petroleum Geology and Experiment, 2020, 42(3): 335-344. | |
13 | 翟常博, 邓模, 曹清古, 等. 川东地区上二叠统龙潭组泥页岩基本特征及页岩气勘探潜力[J]. 石油实验地质, 2021, 43(6): 921-932. |
ZHAI Changbo, DENG Mo, CAO Qinggu. Basic characteristics and exploration potential of shale gas in Longtan Formation of Upper Permian in eastern Sichuan Basin[J]. Petroleum Geology and Experiment, 2021, 43(6): 921-932. | |
14 | 梁新权, 周云, 蒋英, 等. 二叠纪东吴运动的沉积响应差异:来自扬子和华夏板块吴家坪组或龙潭组碎屑锆石LA-ICPMSUPb年龄研究[J]. 岩石学报, 2013, 29(10): 3592-3606. |
LIANG Xinquan, ZHOU Yun, JIANG Ying,et al. Difference of sedimentary response to Dongwu Movement:Study on LA-ICPMS U-Pb ages of detrital zircons from Upper Permian Wujiaping or Longtan Formation from the Yangtze and Cathaysia blocks[J]. Acta Petrologica Sinica, 2013, 29(10): 3592-3606. | |
15 | 梁新权, 周云, 蒋英, 等. 二叠纪东吴运动的沉积响应差异: 来自扬子和华夏板块吴家坪组或龙潭组碎屑锆石LA-ICPMSU-Pb年龄研究[J]. 岩石学报, 2013, 29(10): 3592-3606. |
LIANG Xinquan, ZHOU Yun, JIANG Ying, et al. Difference of sedimentary response to Dongwu Movement: Study on LA-ICPMS U-Pb ages of detrital zircons from Upper Permian Wujiaping or Longtan Formation from the Yangtze and Cathaysia blocks[J]. Acta Petrologica Sinica, 2013, 29(10): 3592-3606. | |
16 | 曹清古, 刘光祥, 张长江, 等. 四川盆地晚二叠世龙潭期沉积环境及其源控作用分析[J]. 石油实验地质, 2013, 35(1): 36-41. |
CAO Qinggu, LIU Guangxiang, ZHANG Changjiang, et al. Sedimentary environment and its controlling on source rocks during late Permian in Sichuan Basin[J]. Petroleum Geology and Experiment, 2013, 35(1): 36-41. | |
17 | 刘光祥, 金之钧, 邓模, 等. 川东地区上二叠统龙潭组页岩气勘探潜力[J]. 石油与天然气地质, 2015, 36(3): 481-487. |
LIU Guangxiang, JIN Zhijun, DENG Mo, et al. Exploration potential for shale gas in the Upper Permian Longtan Formation in eastern Sichuan Basin[J]. Oil & Gas Geology, 2015, 36(3): 481-487. | |
18 | 郭正吾, 邓康龄, 韩永辉, 等. 四川盆地形成与演化[M]. 北京: 地质出版社, 1996: 1-138. |
GUO Zhengwu, DENG Kangling, HAN Yonghui, et al. The formation and development of Sichuan Basin[M]. Beijing: Geological Publishing House, 1996: 1-138. | |
19 | XI Zhaodong, TANG Shuheng, ZHANG Songhang, et al. Pore structure characteristics of marine-continental transitional shale: A case study in the Qinshui Basin, China[J]. Energy & Fuels, 2017, 31(8): 7854-7866. |
20 | 徐旭辉, 申宝剑, 李志明, 等. 页岩气实验地质评价技术研究现状及展望[J]. 油气藏评价与开发, 2020, 10(1): 1-8. |
XU Xuhui, SHEN Baojian, LI Zhiming, et al. Status and prospect of experimental technologies of geological evaluation for shale gas[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(1): 1-8. | |
21 | LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. |
22 | 叶玥豪, 刘树根, 孙玮, 等. 上扬子地区上震旦统—下志留统黑色页岩微孔隙特征[J]. 成都理工大学学报(自然科学版), 2012, 39(6): 575-582. |
YE Yuehao, LIU Shugen, SUN Wei, et al. Micropore characteristics of Upper Sinian-Lower Silurian black shale in upper Yangtze area of China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2012, 39(6): 575-582. | |
23 | 陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37(3): 438-444. |
CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3): 438-444. | |
24 | ATHY L F. Density, porosity, and compaction of sedimentary rocks[J]. AAPG Bulletin, 1930, 14(1): 1-24. |
25 | 焦堃, 叶玥豪, 刘树根, 等. 四川盆地超深层泥页岩纳米孔隙特征及其地质意义[J]. 成都理工大学学报(自然科学版), 2017, 44(2): 129-138. |
JIAO Kun, YE Yuehao, LIU Shugen, et al. Nanopore characteristics of super-deep buried mudstones in Sichuan Basin and its geological implication[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2017, 44(2): 129-138. | |
26 | 李进, 王学军, 周凯, 等. 海陆过渡相超深层页岩储层特征——以川东北普光气田Y4井上二叠统龙潭组下段为例[J]. 石油实验地质, 2022, 44(1): 71-84. |
LI Jin, WANG Xuejun, ZHOU Kai. Characteristics of ultra-deep shale reservoir of marine-continental transitional facies: A case study of lower member of Upper Permian Longtan Formation in Well Y4, Puguang Gas Field, northeastern Sichuan Basin[J]. Petroleum Geology and Experiment, 2022, 44(1): 71-84. | |
27 | JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. |
28 | MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643. |
29 | 彭女佳, 何生, 郝芳, 等. 川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性[J]. 地球科学, 2017, 42(7): 1134-1146. |
PENG Nvjia, HE Sheng, HAO Fang, et al. The pore structure and difference between Wufeng and Longmaxi shales in Pengshui area, southeastern Sichuan[J]. Earth Science, 2017, 42(7): 1134-1146. | |
30 | 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510. |
ZHAO Wenzhi, LI Jianzhong, YANG Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510. | |
31 | 侯宇光, 张坤朋, 何生, 等. 南方下古生界海相页岩极低电阻率成因及其地质意义[J]. 地质科技通报, 2021, 40(1): 80-89. |
HOU Yuguang, ZHANG Kunpeng, HE Sheng, et al. Origin and geological significance of ultra-low resistivity in Lower Paleozoic marine shale, South China[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 80-89. | |
32 | 高凤琳, 王成锡, 宋岩, 等. 氩离子抛光-场发射扫描电镜分析方法在识别有机显微组分中的应用[J]. 石油实验地质, 2021, 43(2): 360-367. |
GAO Fenglin, WANG Chengxi, SONG Yan, et al. Ar-ion polishing FE-SEM analysis of organic maceral identification[J]. Petroleum Geology and Experiment, 2021, 43(2): 360-367. | |
33 | ARDAKANI O H, SANEI H, GHANIZADEH A, et al. Do all fractions of organic matter contribute equally in shale porosity? A case study from Upper Ordovician Utica Shale, southern Quebec, Canada[J]. Marine and Petroleum Geology, 2018, 92: 794-808. |
34 | 王鹏威, 刘忠宝, 张殿伟, 等. 川东地区二叠系海相页岩有机质富集对有机质孔发育的控制作用[J]. 石油与天然气地质, 2023, 44(2): 379-392. |
WANG Pengwei, LIU Zhongbao, ZHANG Dianwei, et al. Control of organic matter enrichment on organic pore development in the Permian marine organic-rich shale, eastern Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(2): 379-392. | |
35 | 腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699. |
BORJIGIN Tenger, LU Longfei, YU Lingjie, et al. Formation, preservation and connectivity control of organic pores in shale[J]. Petroleum Exploration and Development, 2021, 48(4): 687-699. | |
36 | 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201. |
GUO Xusheng, LI Yuping, BORJIGIN Tenger, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201. | |
37 | 王濡岳, 胡宗全, 龙胜祥, 等. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. |
WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 353-364. | |
38 | 何陈诚, 赵永强, 俞凌杰, 等 .川东北地区二叠系大隆组深层页岩气储层孔隙结构及其分形特征[J]. 石油实验地质, 2024, 46(2): 263-277. |
HE Chencheng, ZHAO Yongqiang, YU Lingjie, et al. Pore structure and fractal characteristics of deep shale gas reservoirs in the Permian Dalong Formation, northeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 46 (2): 263-277. |
[1] | 阮壮, 徐睿, 王杰, 常秋红, 王大华, 王建东, 周广清, 于炳松. 柴达木盆地马海东地区古近系砂岩储层微观孔隙结构特征及微观致密区成因[J]. 石油与天然气地质, 2024, 45(4): 1032-1045. |
[2] | 孙靖, 尤新才, 薛晶晶, 郑孟林, 常秋生, 王韬. 准噶尔盆地深层-超深层碎屑岩致密气储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 1046-1063. |
[3] | 张琴, 卢东连, 王凯, 刘畅, 郭明强, 张梦婕, 郭超杰, 王颖, 胡文忠, 朱筱敏. 下扬子地区荷塘组细粒沉积岩岩相划分及微观孔隙发育特征[J]. 石油与天然气地质, 2024, 45(4): 1089-1105. |
[4] | 佟欢, 朱世发, 崔航, 蔡文典, 马立驰. 渤海湾盆地桩海地区古近系沙河街组一段-二段混积岩优质储层特征与控制因素[J]. 石油与天然气地质, 2024, 45(4): 1106-1120. |
[5] | 李倩文. 渤海湾盆地东营凹陷古近系沙河街组页岩储层润湿性及其主控因素[J]. 石油与天然气地质, 2024, 45(4): 1142-1154. |
[6] | 郭原草, 郭建华, 劳海港, 李智宇, 余烨, 陈广, 吴诗情, 黄俨然. 琼东南盆地松南低凸起YA区花岗岩潜山风化壳储层特征及发育控制因素[J]. 石油与天然气地质, 2024, 45(4): 1155-1167. |
[7] | 李一波, 陈耀旺, 赵金洲, 王志强, 魏兵, Valeriy Kadet. 超临界二氧化碳与页岩相互作用机制[J]. 石油与天然气地质, 2024, 45(4): 1180-1194. |
[8] | 胡宗全, 刘忠宝, 李倩文, 吴舟凡. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
[9] | 周进高, 徐哲航, 黄世伟, 李文正, 段军茂, 朱永进, 郑剑锋, 吴东旭, 常少英. 碳酸盐岩沉积储层研究前沿与未来发展方向[J]. 石油与天然气地质, 2024, 45(4): 929-953. |
[10] | 庞小娇, 王贵文, 岳大力, 李栋, 李红斌, 王重阳, 匡立春, 赖锦. 细粒沉积岩测井评价研究进展[J]. 石油与天然气地质, 2024, 45(4): 954-978. |
[11] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[12] | 李宁, 李瑞磊, 苗贺, 曹开芳, 田军. 松辽盆地深层中-基性火山岩有利相带及储层“甜点”逐级识别[J]. 石油与天然气地质, 2024, 45(3): 801-815. |
[13] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[14] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[15] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||