石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (4): 910-922.doi: 10.11743/ogg20230409
刘天1,2(), 刘小平1,2(), 刘启东3, 段宏亮3, 刘世丽3, 孙彪1,2, 化祖献1,2
收稿日期:
2023-02-23
修回日期:
2023-06-17
出版日期:
2023-08-01
发布日期:
2023-08-09
通讯作者:
刘小平
E-mail:13804341768@163.com;liuxiaoping@cup.edu.cn
第一作者简介:
刘天(1997—),男,博士研究生,非常规油气地质。E?mail: 基金项目:
Tian LIU1,2(), Xiaoping LIU1,2(), Qidong LIU3, Hongliang DUAN3, Shili LI3, Biao SUN1,2, ZuXian HUA1,2
Received:
2023-02-23
Revised:
2023-06-17
Online:
2023-08-01
Published:
2023-08-09
Contact:
Xiaoping LIU
E-mail:13804341768@163.com;liuxiaoping@cup.edu.cn
摘要:
为准确、定量评价陆相页岩游离油量及其影响因素,选取了苏北盆地高邮凹陷古近系阜宁组二段陆相页岩样品,利用全岩X射线衍射分析、有机碳测定、多温阶热释烃、高压压汞、有机质抽提和二维核磁共振等实验技术手段,分析了页岩样品矿物成分、生烃品质、孔隙结构和含油性等特征。结果表明,页岩富含石英、长石、方解石、白云石以及黏土矿物等成分;总有机碳含量(TOC)为0.61 % ~ 3.70 %,镜质体反射率(Ro)为0.70 %~0.72 %,处于成熟阶段;储集空间主要为晶间孔、粒间孔和有机孔。二维核磁共振可以有效表征页岩游离油赋存状态。抽提分离出页岩储层内可动用的游离态轻、重烃类化合物和可溶有机质,对抽提前、后页岩样品进行二维核磁共振谱图分析,将谱图划分出轻质油和类固体有机质等区域。抽提后类固体有机质含量和TOC有良好相关关系,抽提前核磁轻质烃含量和核磁轻质烃抽提差都与热解游离油量有较好线性关系。游离油量随着长英质矿物含量增加先增大后减小,与TOC含量整体上为正相关关系;Ⅰ型和Ⅱ1型干酪根有机质页岩游离油量较其他类型高;适中的成熟度演化使干酪根生成烃类轻组分增多、可动性增强,游离油量增多。高孔隙度、高比孔体积及高孔喉半径均值的页岩储层有利于游离油富集。
中图分类号:
表1
高邮凹陷X1井阜二段页岩矿物组分含量"
样品编号 | 岩性 | 深度/m | 矿物成分含量/% | ||||
---|---|---|---|---|---|---|---|
黏土矿物 | 石英 | 长石 | 方解石 | 白云石 | |||
S-1 | 黏土质页岩 | 3 119.35 | 54.89 | 25.05 | 9.15 | 7.07 | 3.85 |
S-2 | 长英质页岩 | 3 120.49 | 9.39 | 41.41 | 27.07 | 12.32 | 9.80 |
S-3 | 混合质页岩 | 3 121.92 | 40.66 | 33.78 | 14.68 | 5.03 | 5.85 |
S-4 | 混合质页岩 | 3 123.95 | 41.21 | 23.74 | 11.61 | 10.46 | 12.97 |
S-5 | 混合质页岩 | 3 128.17 | 33.47 | 30.47 | 11.71 | 0.41 | 23.94 |
S-6 | 混合质页岩 | 3 129.82 | 35.03 | 25.28 | 18.24 | 18.13 | 3.32 |
S-7 | 混合质页岩 | 3130.61 | 48.09 | 27.61 | 8.58 | 7.14 | 8.58 |
S-8 | 碳酸盐质页岩 | 3 131.00 | 21.13 | 14.46 | 3.74 | 18.60 | 42.06 |
S-9 | 长英质页岩 | 3 132.90 | 28.90 | 34.69 | 25.66 | 0.71 | 10.04 |
S-10 | 混合质页岩 | 3 133.47 | 32.86 | 26.16 | 8.11 | 1.84 | 31.03 |
S-11 | 长英质页岩 | 3 136.02 | 37.58 | 23.15 | 27.86 | 9.02 | 2.40 |
S-12 | 混合质页岩 | 3 143.99 | 31.81 | 29.42 | 9.45 | 9.55 | 19.76 |
S-13 | 混合质页岩 | 3 149.35 | 28.87 | 34.80 | 15.37 | 0.99 | 19.98 |
S-14 | 碳酸盐质页岩 | 3 151.69 | 15.87 | 16.18 | 8.09 | 16.29 | 43.57 |
S-15 | 混合质页岩 | 3 161.54 | 25.84 | 20.56 | 12.70 | 5.96 | 34.94 |
S-16 | 混合质页岩 | 3 161.87 | 39.90 | 22.60 | 8.77 | 9.98 | 18.75 |
S-17 | 碳酸盐质页岩 | 3 162.41 | 15.79 | 9.34 | 5.26 | 11.60 | 58.00 |
S-18 | 混合质页岩 | 3 164.93 | 12.64 | 28.74 | 17.45 | 1.46 | 39.71 |
S-19 | 混合质页岩 | 3 166.93 | 21.45 | 21.23 | 13.53 | 28.05 | 15.73 |
S-20 | 混合质页岩 | 3 357.24 | 43.27 | 23.27 | 10.61 | 15.82 | 7.04 |
S-21 | 混合质页岩 | 3 128.47 | 35.71 | 25.94 | 10.38 | 16.38 | 11.60 |
S-22 | 混合质页岩 | 3 119.12 | 18.57 | 35.12 | 4.04 | 41.27 | 1.01 |
S-23 | 混合质页岩 | 3 114.42 | 41.37 | 30.92 | 8.48 | 5.17 | 14.06 |
S-24 | 混合质页岩 | 3 125.07 | 45.95 | 32.02 | 13.62 | 1.56 | 6.86 |
S-25 | 碳酸盐质页岩 | 3 128.84 | 10.20 | 19.09 | 0.91 | 1.82 | 67.98 |
S-26 | 混合质页岩 | 3 127.68 | 33.47 | 30.47 | 11.71 | 0.41 | 23.94 |
S-27 | 碳酸盐质页岩 | 3 129.11 | 27.23 | 13.26 | 3.54 | 5.36 | 50.61 |
S-28 | 混合质页岩 | 3 131.49 | 38.38 | 32.04 | 11.16 | 7.78 | 10.64 |
S-29 | 黏土质页岩 | 3 124.39 | 55.39 | 27.02 | 8.59 | 4.29 | 4.71 |
S-30 | 黏土质页岩 | 3 124.79 | 56.15 | 26.68 | 10.34 | 1.96 | 4.86 |
表2
高邮凹陷X1井阜二段页岩地球化学特征"
样品编号 | TOC/% | S1/(mg/g) | S2/(mg/g) | Tmax/℃ | Ro/% | 样品编号 | TOC/% | S1/(mg/g) | S2/(mg/g) | Tmax/℃ | Ro/% |
---|---|---|---|---|---|---|---|---|---|---|---|
S-1 | 1.30 | 0.65 | 3.26 | 418 | 0.705 | S-16 | 1.14 | 0.74 | 5.36 | 447 | — |
S-2 | 0.61 | 0.19 | 0.45 | 422 | — | S-17 | 0.90 | 0.71 | 2.50 | 440 | — |
S-3 | 1.21 | 0.60 | 1.75 | 414 | 0.713 | S-18 | 1.24 | 1.21 | 5.98 | 438 | — |
S-4 | 0.93 | 1.32 | 6.36 | 445 | 0.702 | S-19 | 1.52 | 1.44 | 7.29 | 450 | 0.715 |
S-5 | 1.32 | 0.96 | 6.61 | 406 | — | S-20 | 0.68 | 0.35 | 1.85 | 456 | 0.713 |
S-6 | 1.72 | 0.83 | 7.09 | 415 | — | S-21 | 3.70 | 2.43 | 14.24 | 440 | — |
S-7 | 1.60 | 1.01 | 5.37 | 424 | — | S-22 | 2.49 | 1.19 | 9.30 | 439 | — |
S-8 | 0.78 | 1.22 | 2.27 | 422 | — | S-23 | 2.21 | 1.68 | 13.10 | 414 | 0.714 |
S-9 | 0.72 | 0.43 | 1.23 | 408 | 0.713 | S-24 | 1.40 | 1.11 | 5.08 | 407 | — |
S-10 | 0.77 | 0.43 | 1.27 | 402 | — | S-25 | 2.39 | 0.68 | 11.43 | 432 | 0.720 |
S-11 | 1.36 | 0.97 | 5.00 | 449 | 0.712 | S-26 | 1.32 | 0.96 | 5.05 | 406 | — |
S-12 | 1.31 | 1.28 | 5.42 | 429 | 0.708 | S-27 | 2.04 | 1.08 | 10.92 | 424 | — |
S-13 | 1.26 | 1.08 | 3.20 | 431 | — | S-28 | 0.96 | 1.02 | 5.32 | 422 | — |
S-14 | 1.02 | 0.80 | 1.32 | 424 | 0.706 | S-29 | 1.71 | 0.62 | 4.69 | 402 | — |
S-15 | 1.97 | 0.63 | 3.69 | 440 | 0.705 | S-30 | 1.48 | 0.77 | 4.68 | 407 | — |
表4
高邮凹陷X1井阜二段页岩含油性参数"
样品编号 | K恢复 | 含油量/(mg/g) | 样品编号 | K恢复 | 含油量/(mg/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1冷冻 | S1-1 | S1-2 | S2-1 | 游离油量 | S1冷冻 | S1-1 | S1-2 | S2-1 | 游离油量 | ||||
S-1 | 1.35 | 0.88 | 0.41 | 1.13 | 2.71 | 1.77 | S-16 | 3.61 | 2.67 | 0.93 | 2.79 | 2.04 | 5.65 |
S-2 | 2.89 | 0.55 | 0.18 | 0.81 | 1.29 | 1.35 | S-17 | 1.52 | 1.08 | 0.29 | 1.26 | 1.27 | 1.92 |
S-3 | 2.27 | 1.36 | 0.54 | 1.53 | 2.03 | 2.83 | S-18 | 1.98 | 2.39 | 0.66 | 2.51 | 1.72 | 4.35 |
S-4 | 1.83 | 2.41 | 0.54 | 1.88 | 1.92 | 3.51 | S-19 | 1.66 | 2.39 | 0.51 | 3.24 | 1.29 | 4.70 |
S-5 | 1.81 | 1.74 | 0.66 | 2.05 | 1.51 | 3.49 | S-20 | 1.80 | 0.63 | 0.21 | 0.69 | 2.3 | 1.17 |
S-6 | 4.61 | 3.83 | 0.93 | 3.26 | 2.53 | 7.19 | S-21 | 1.91 | 4.64 | 1.18 | 4.02 | 1.28 | 7.41 |
S-7 | 2.00 | 2.00 | 0.94 | 1.98 | 2.60 | 3.92 | S-22 | 2.71 | 3.23 | 0.73 | 3.02 | 1.72 | 5.79 |
S-8 | 1.29 | 1.57 | 0.47 | 1.94 | 1.40 | 2.76 | S-23 | 1.40 | 2.35 | 0.60 | 3.24 | 3.49 | 4.51 |
S-9 | 2.12 | 0.91 | 0.18 | 0.98 | 1.28 | 1.64 | S-24 | 2.36 | 2.62 | 0.53 | 2.29 | 2.55 | 4.33 |
S-10 | 1.95 | 0.84 | 0.30 | 1.05 | 1.96 | 1.76 | S-25 | 2.97 | 2.02 | 0.71 | 2.20 | 0.95 | 4.25 |
S-11 | 2.87 | 2.78 | 0.42 | 2.36 | 1.76 | 4.59 | S-26 | 1.81 | 1.74 | 0.66 | 2.05 | 2.29 | 3.49 |
S-12 | 1.74 | 2.23 | 0.80 | 2.93 | 1.41 | 4.68 | S-27 | 1.81 | 1.95 | 0.57 | 1.98 | 2.06 | 3.42 |
S-13 | 2.45 | 2.65 | 1.00 | 2.64 | 2.37 | 5.21 | S-28 | 1.82 | 1.86 | 0.72 | 1.80 | 1.89 | 3.36 |
S-14 | 1.84 | 1.47 | 0.49 | 1.91 | 1.26 | 3.07 | S-29 | 2.47 | 1.53 | 0.79 | 1.54 | 2.73 | 3.24 |
S-15 | 1.62 | 1.02 | 0.87 | 4.49 | 0.66 | 5.75 | S-30 | 2.01 | 1.55 | 0.58 | 1.85 | 3.56 | 3.21 |
表5
高邮凹陷X1井阜二段页岩二维核磁抽提信号"
样品编号 | 抽提前核磁信号强度/au | 抽提后核磁信号强度/au | ||||||
---|---|---|---|---|---|---|---|---|
类固体有机质 | 羟基化合物 | 水 | 轻质烃 | 类固体有机质 | 羟基化合物 | 水 | 轻质烃 | |
S-4 | 0.393 | 2.132 | 0.252 | 0.259 | 0.138 | 1.798 | 0.123 | 0.178 |
S-5 | 0.758 | 5.109 | 0.119 | 0.111 | 0.427 | 4.736 | 0.172 | 0.068 |
S-10 | 0.274 | 2.677 | 0.279 | 0.129 | 0.209 | 2.169 | 0.181 | 0.071 |
S-11 | 0.675 | 1.606 | 0.269 | 0.329 | 0.406 | 1.246 | 0.192 | 0.112 |
S-20 | 0.300 | 1.090 | 0.476 | 0.071 | 0.087 | 1.215 | 0.343 | 0.075 |
表6
高邮凹陷X1井阜二段页岩二维核磁抽提结果"
样品编号 | 抽提前含量/(μL/g) | 抽提后含量/(μL/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
样品质量/g | 类固体有机质 | 羟基化合物 | 水 | 轻质烃 | 样品质量/g | 类固体有机质 | 羟基化合物 | 水 | 轻质烃 | |
S-4 | 30.03 | 2.62 | 14.22 | 1.68 | 1.73 | 29.76 | 1.04 | 13.49 | 0.92 | 1.33 |
S-5 | 25.27 | 7.00 | 47.20 | 1.10 | 1.02 | 25.11 | 3.77 | 41.81 | 1.52 | 0.60 |
S-10 | 29.60 | 2.04 | 19.92 | 2.08 | 0.96 | 29.50 | 1.65 | 17.13 | 1.43 | 0.56 |
S-11 | 30.24 | 3.69 | 8.77 | 1.47 | 1.80 | 30.14 | 2.97 | 9.13 | 1.41 | 0.82 |
S-20 | 34.50 | 2.61 | 9.49 | 4.14 | 0.62 | 34.35 | 0.72 | 9.95 | 2.81 | 0.61 |
1 | HOU Lianhua, ZOU Caineng, YU Zhichao, et al. Quantitative assessment of the sweet spot in marine shale oil and gas based on geology, engineering, and economics: A case study from the Eagle Ford Shale, USA[J]. Energy Strategy Reviews, 2021, 38: 100713. |
2 | ADEYILOLA A, NORDENG S, ONWUMELU C, et al. Geochemical, petrographic and petrophysical characterization of the Lower Bakken Shale, Divide County, North Dakota[J]. International Journal of Coal Geology, 2020, 224: 103477. |
3 | LIU Kouqi, OSTADHASSAN M, GENTZIS T, et al. Characterization of geochemical properties and microstructures of the Bakken Shale in North Dakota[J]. International Journal of Coal Geology, 2018, 190: 84-98. |
4 | 李梦莹, 朱如凯, 胡素云. 海外陆相页岩油地质特征与资源潜力[J]. 岩性油气藏, 2022, 34(1): 163-174. |
LI Mengying, ZHU Rukai, HU Suyun. Geological characteristics and resource potential of overseas terrestrial shale oil. Lithologic Reservoirs[J], 2022, 34(1): 163-174. | |
5 | XI Kelai, LI Ke, CAO Yingchang, et al. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1342-1353. |
6 | 雷海艳, 郭佩, 孟颖, 等. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价[J]. 岩性油气藏, 2022, 34(3): 142-153. |
LEI Haiyan, GUO Pei, MENG Ying, et al. Pore structure and classification evaluation of shale oil reservoirs of Permian Fengcheng Formation in Mahu Sag[J]. Lithologic Reservoirs, 2022, 34(3): 142-153. | |
7 | 黎茂稳, 金之钧, 董明哲, 等.陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. |
LI Maowen, JIN Zhijun, DONG Mingzhe, et al.Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4): 489-505. | |
8 | 冯动军. 四川盆地侏罗系大安寨段陆相页岩油气地质特征及勘探方向[J]. 石油实验地质, 2022, 44(2): 219-230. |
FENG Dongjun. Geological characteristics and exploration direction of continental shale gas in Jurassic Daanzhai Member, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 219-230. | |
9 | 崔宝文, 赵莹, 张革, 等. 松辽盆地古龙页岩油地质储量估算方法及其应用[J]. 大庆石油地质与开发, 2022, 41(3): 14-23. |
CUI Baowen, ZHAO Ying, ZHANG Ge, et al. Estimation method and application for OOIP of Gulong shale oil in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(3): 14-23. | |
10 | 王永诗, 李政, 王民, 等. 渤海湾盆地济阳坳陷陆相页岩油吸附控制因素[J]. 石油与天然气地质, 2022, 43(3): 489-498. |
WANG Yongshi, LI Zheng, WANG Min, et al. Factors controlling lacustrine shale oil adsorption in the Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(3): 489-498. | |
11 | JIN Zhijun, LIANG Xinping, BAI Zhenrui. Exploration breakthrough and its significance of Gulong lacustrine shale oil in the Songliao Basin, Northeastern China[J]. Energy Geoscience, 2022, 3(2): 120-125. |
12 | 沈云琦, 金之钧, 苏建政, 等. 中国陆相页岩油储层水平渗透率与垂直渗透率特征——以渤海湾盆地济阳坳陷和江汉盆地潜江凹陷为例[J]. 石油与天然气地质, 2022, 43(2): 378-389. |
SHEN Yunqi, JIN Zhijun, SU Jianzheng, et al. Characteristics of horizontal and vertical permeability of continental shale oil reservoirs in China: A case from Jiyang Depression in Bohai Bay Basin and Qianjiang Sag in Jianghan Baisn[J]. Oil & Gas Geology, 2022, 43(2): 378-389. | |
13 | 黎茂稳, 马晓潇, 金之钧, 等. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. |
LI Maowen, MA Xiaoxiao, JIN Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J]. Oil & Gas Geology, 2022, 43(1): 1-25. | |
14 | CAO Zhe, JIANG Hang, ZENG Jianhui, et al. Nanoscale liquid hydrocarbon adsorption on clay minerals: A molecular dynamics simulation of shale oils[J]. Chemical Engineering Journal, 2021, 420(Part 3): 127578. |
15 | HU Tao, PANG Xiongqi, JIANG Fujie, et al. Movable oil content evaluation of lacustrine organic-rich shales: Methods and a novel quantitative evaluation model[J]. Earth-Science Reviews, 2021, 214: 103545. |
16 | 蒋启贵, 黎茂稳, 马媛媛, 等. 页岩油可动性分子地球化学评价方法——以济阳坳陷页岩油为例[J]. 石油实验地质, 2018, 40(6): 849-854. |
JIANG Qigui, LI Maowen, MA Yuanyuan, et al. Molecular geochemical evaluation of shale oil mobility: A case study of shale oil in Jiyang Depression[J]. Petroleum Geology and Experiment, 2018, 40(6): 849-854. | |
17 | LI Chaoliu, YAN Weilin, WU Hongliang, et al. Calculation of oil saturation in clay-rich shale reservoirs: A case study of Qing 1 Member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2022, 49(6): 1351-1363. |
18 | 钱门辉, 蒋启贵, 黎茂稳, 等. 泥页岩三维定量荧光分析技术与应用[J]. 石油实验地质, 2020, 42(2): 311-318. |
QIAN Menhui, JIANG Qigui, LI Maowen, et al. Three-dimensional quantitative fluorescence analysis and application in shale[J]. Petroleum Geology and Experiment, 2020, 42(2): 311-318. | |
19 | LIU Bo, BAI Longhui, CHI Yaao, et al. Geochemical characterization and quantitative evaluation of shale oil reservoir by two-dimensional nuclear magnetic resonance and quantitative grain fluorescence on extract: A case study from the Qingshankou Formation in Southern Songliao Basin, northeast China[J]. Marine and Petroleum Geology, 2019, 109: 561-573. |
20 | XU Yi, Zengmin LUN, PAN Zhejun, et al. Occurrence space and state of shale oil: A review[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110183. |
21 | XU Chenyu, XIE Ranhong, GUO Jiangfeng, et al. Comprehensive characterization of petrophysical properties in shale by solvent extraction experiments and 2D NMR[J]. Fuel, 2023, 335: 127070. |
22 | SONG Yiqiao, KAUSIK R. NMR application in unconventional shale reservoirs-A new porous media research frontier[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 112/113: 17-33. |
23 | ZHU Chaofan, GUO Wei, LI Yajun, et al. Effect of occurrence states of fluid and pore structures on shale oil movability[J]. Fuel, 2021, 288: 119847. |
24 | SUI Hongguang, ZHANG Fenyun, WANG Ziqiang, et al. Molecular simulations of oil adsorption and transport behavior in inorganic shale[J]. Journal of Molecular Liquids, 2020, 305: 112745. |
25 | WANG Sen, JAVADPOUR F, FENG Qihong. Molecular dynamics simulations of oil transport through inorganic nanopores in shale[J]. Fuel, 2016, 171: 74-86. |
26 | HUANG Hexin, LI Rongxi, CHEN Weitao, et al. Revisiting movable fluid space in tight fine-grained reservoirs: A case study from Shahejie shale in the Bohai Bay Basin, NE China[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109170. |
27 | MENG Ziyuan, SUN Wei, LIU Yiqun, et al. Effect of pore networks on the properties of movable fluids in tight sandstones from the perspective of multi-techniques[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108449. |
28 | GAO Gang, YANG Shangru, ZHANG Weiwei, et al. Organic geochemistry of the lacustrine shales from the Cretaceous Taizhou Formation in the Gaoyou Sag, Northern Jiangsu Basin[J]. Marine and Petroleum Geology, 2018, 89(Part 3): 594-603. |
29 | 付茜, 刘启东, 刘世丽, 等. 苏北盆地高邮凹陷古近系阜宁组二段页岩油成藏条件分析[J]. 石油实验地质, 2020, 42(4): 625-631. |
FU Qian, LIU Qidong, LIU Shili, et al. Shale oil accumulation conditions in the second member of Paleogene Funing Formation, Gaoyou Sag, Subei Basin[J]. Petroleum Geology and Experiment, 2020, 42(4): 625-631. | |
30 | 钱门辉, 黎茂稳, 蒋启贵, 等. 页岩岩心样品烃类散失特征与地质意义[J]. 石油实验地质, 2022, 44(3): 497-504, 514. |
QIAN Menhui, LI Maowen, JIANG Qigui, et al. Evaluation of evaporative loss of hydrocarbon in shale samples and its geological implications[J]. Petroleum Geology and Experiment, 2022, 44(3): 497-504, 514. | |
31 | 赵贤正, 金凤鸣, 周立宏, 等. 渤海湾盆地风险探井歧页1H井沙河街组一段页岩油勘探突破及其意义[J]. 石油学报, 2022, 43(10): 1369-1382. |
ZHAO Xianzheng, JIN Fengming, ZHOU Lihong, et al. Breakthrough and significance of shale oil exploration in Member 1 of Shahejie Formation of Well Qiye 1H, a risk exploratory well in Bohai Bay Basin[J]. Acta Petrolei Sinica, 2022, 43(10): 1369-1382. | |
32 | 中国石油天然气总公司. 陆相烃源岩地球化学评价方法: [S]. 北京: 石油工业出版社, 1996. |
China National Petroleum Corporation. Geochemical evaluation method of continental source rock: [S]. Beijing: Petroleum Industry Press, 1996. | |
33 | LI Jinbu, JIANG Chunqing, WANG Min, et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: A new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311. |
34 | MA Xiao, GUO Shaobin, SHI Dishi, et al. Investigation of pore structure and fractal characteristics of marine-continental transitional shales from Longtan Formation using MICP, gas adsorption, and NMR (Guizhou, China)[J]. Marine and Petroleum Geology, 2019, 107: 555-571. |
35 | WANG Xin, WANG Min, LI Jinbu, et al. Thermal maturity: The controlling factor of wettability, pore structure, and oil content in the lacustrine Qingshankou shale, Songliao Basin[J]. Journal of Petroleum Science and Engineering, 2022, 215(Part A): 110618. |
36 | DONG Tian, WANG Chuan, LIANG Xing, et al. Paleodepositional conditions and organic matter accumulation mechanisms in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shales, Middle Yangtze region, South China[J]. Marine and Petroleum Geology, 2022, 143: 105823. |
37 | HOU Lianhua, WU Songtao, JING Zhenhua, et al. Effects of types and content of clay minerals on reservoir effectiveness for lacustrine organic matter rich shale[J]. Fuel, 2022, 327: 125043. |
38 | YANG Meihua, ZUO Yinhui, YAN Kangnan, et al. Hydrocarbon generation history constrained by thermal history and hydrocarbon generation kinetics: A case study of the Dongpu Depression, Bohai Bay Basin, China[J]. Petroleum Science, 2022, 19(2): 472-485. |
39 | LIANG Tian, ZHAN Zhaowen, ZOU Yanrong, et al. Research on type I kerogen molecular simulation and docking between kerogen and saturated hydrocarbon molecule during oil generation[J]. Chemical Geology, 2023, 617: 121263. |
40 | 徐学敏, 杨佳佳, 孙玮琳, 等. 页岩油气勘探中热解分析与总有机碳预测[J]. 中国石油大学学报(自然科学版), 2022, 46(4): 22-29. |
XU Xuemin, YANG Jiajia, SUN Weilin, et al. Pyrolysis analysis and total organic carbon prediction in shale oil and gas exploration[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(4): 22-29. | |
41 | SU Siyuan, JIANG Zhenxue, SHAN Xuanlong, et al. The effects of shale pore structure and mineral components on shale oil accumulation in the Zhanhua Sag, Jiyang Depression, Bohai Bay Basin, China[J]. Journal of Petroleum Science and Engineering, 2018, 165: 365-374. |
42 | 冷筠滢, 钱门辉, 鹿坤, 等. 渤海湾盆地东濮凹陷北部页岩油富集类型和烃类组成特征——以文410井古近系沙河街组三段为例[J]. 石油实验地质, 2022, 44(6): 1028-1036. |
LENG Junying, QIAN Menhui, LU Kun, et al. Enrichment types and hydrocarbon composition characteristics of shale oil in the northern part of Dongpu Sag, Bohai Bay Basin: a case study of the third member of Paleogene Shahejie Formation of well Wen 410[J]. Petroleum Geology & Experiment, 2022, 44(6): 1028-1036. | |
43 | 文志刚, 罗雨舒, 刘江艳, 等. 陇东地区三叠系长7段页岩油储层孔隙结构特征及成因机制 [J]. 岩性油气藏, 2022, 34(6): 47-59. |
WEN Zhigang, LUO Yushu, LIU Jiangyan, et al. Pore structure characteristics and genetic mechanism of Triassic Chang 7 shale oil reservoir in Longdong area[J]. Lithologic Reservoirs, 2022, 34(6): 47-59. |
[1] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[2] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[3] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[4] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[5] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[6] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[7] | 方志雄, 肖秋生, 张殿伟, 段宏亮. 苏北盆地陆相“断块型”页岩油地质特征及勘探实践[J]. 石油与天然气地质, 2023, 44(6): 1468-1478. |
[8] | 李明, 王民, 张金友, 张宇辰, 刘召, 雒斌, 卞从胜, 李进步, 王鑫, 赵信斌, 董尚德. 中国典型盆地陆相页岩油组分评价及意义[J]. 石油与天然气地质, 2023, 44(6): 1479-1498. |
[9] | 李晓, 郭鹏, 胡彦智, 李士祥, 杨伟伟. 陆相页岩压裂试验与数值模拟[J]. 石油与天然气地质, 2023, 44(4): 1009-1019. |
[10] | 金之钧, 张谦, 朱如凯, 董琳, 付金华, 刘惠民, 云露, 刘国勇, 黎茂稳, 赵贤正, 王小军, 胡素云, 唐勇, 白振瑞, 孙冬胜, 李晓光. 中国陆相页岩油分类及其意义[J]. 石油与天然气地质, 2023, 44(4): 801-819. |
[11] | 马克, 侯加根, 董虎, 吴国强, 闫林, 张丽薇. 页岩油储层混合细粒沉积孔喉特征及其对物性的控制作用[J]. 石油与天然气地质, 2022, 43(5): 1194-1205. |
[12] | 沈云琦, 金之钧, 苏建政, 李志明, 牛骏. 中国陆相页岩油储层水平渗透率与垂直渗透率特征[J]. 石油与天然气地质, 2022, 43(2): 378-389. |
[13] | 李志强, 杨波, 王军, 韩自军, 吴庆勋. 南黄海盆地中-新生界湖相烃源岩地球化学特征及生烃史[J]. 石油与天然气地质, 2022, 43(2): 419-431. |
[14] | 黎茂稳, 马晓潇, 金之钧, 李志明, 蒋启贵, 吴世强, 李政, 徐祖新. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. |
[15] | 白龙辉, 柳波, 迟亚奥, 李士超, 闻迅. 二维核磁共振技术表征页岩所含流体特征的应用——以松辽盆地青山口组富有机质页岩为例[J]. 石油与天然气地质, 2021, 42(6): 1389-1400. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||