石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (1): 229-240.doi: 10.11743/ogg20220119
收稿日期:
2020-07-20
修回日期:
2021-12-01
出版日期:
2022-02-01
发布日期:
2022-01-28
第一作者简介:
朱海燕(1984—),男,博士、教授、博士生导师,石油钻采岩石力学的教学和科研工作。E?mail:基金项目:
Haiyan Zhu1(), Xinqin Xu1, Anhai Zhong2, Qinxi Zhang3
Received:
2020-07-20
Revised:
2021-12-01
Online:
2022-02-01
Published:
2022-01-28
摘要:
中国页岩油储层非均质性强、粘度高和可改造性差,水平井分段多簇射孔体积压裂难以形成复杂的裂缝网络,单缝“缝控储量”低,必须寻求新的工艺突破。通过增加单个压裂段内的射孔簇簇数,使多个射孔簇裂缝在射孔段内均衡扩展,对页岩储层进行密切割,实现页岩油储层的充分改造,是中国页岩油高效开发的关键。考虑数千米长压裂管柱与射孔孔眼的摩阻以及多裂缝之间流体的竞争分配,建立页岩油水平井密切割多裂缝动态扩展的渗流-应力-损伤模型,并通过现场压裂施工数据验证其正确性。根据胜利油田页岩油储层的地质工程特征,开展射孔簇簇数、射孔孔眼数量、压裂施工参数等对多裂缝流体流量分配、应力干扰及裂缝几何形态影响的数值模拟研究发现:单簇裂缝扩展时,裂缝诱导应力最优波及距离为10 m左右;簇间距为10 m时,三簇裂缝均衡扩展射孔密度为20 孔/m,施工排量为12 m3/min,压裂液粘度为30 mPa·s;4个射孔簇时,压裂液均匀分配和裂缝均衡扩展的簇间距为10 m。此项研究为胜利油田页岩油勘探开发的突破奠定了理论基础。
中图分类号:
表1
胜利油田页岩油YYP1井模型参数"
层位 | 岩性 | E/GPa | K/(10-3μm2) | Φ/% | |||||
---|---|---|---|---|---|---|---|---|---|
隔层4 | 泥岩 | 23 | 0.20 | 0.005 | 4.2 | 51.8 | 69.40 | 75.50 | 85.50 |
储层3 | 白云岩 | 25 | 0.27 | 1.200 | 6.0 | 51.8 | 66.60 | 73.99 | 87.20 |
隔层3 | 泥岩 | 22 | 0.23 | 0.005 | 2.8 | 51.8 | 65.60 | 71.50 | 88.90 |
储层2 | 泥灰岩 | 27 | 0.25 | 2.850 | 3.0 | 51.8 | 63.62 | 69.65 | 89.50 |
隔层2 | 泥岩 | 23 | 0.24 | 0.004 | 6.0 | 51.8 | 67.10 | 72.50 | 90.50 |
储层1 | 灰岩 | 25 | 0.21 | 3.000 | 3.5 | 51.8 | 67.40 | 74.80 | 90.91 |
隔层1 | 泥质灰岩 | 22 | 0.22 | 0.010 | 2.0 | 51.8 | 70.50 | 76.80 | 91.50 |
1 | 胥云,雷群,陈铭,等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发,2018,45(5):874-887. |
Xu Yun, Lei Qun, Chen Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development,2018,45(5):874-887. | |
2 | Miller C, Waters G, Rylander E. Evaluation of production log data from horizontal wells drilled in organic shales[C]// SPE. North American Unconventional Gas Conference and Exhibition.The Woodlands, Texas, USA,2011:SPE⁃144326⁃MS. |
3 | 郑有成,范宇,雍锐,等. 页岩气密切割分段+高强度加砂压裂新工艺[J]. 天然气工业,2019,39(10):76-81. |
Zheng Youcheng, Fan Yu, Yong Rui,et al. A new fracturing technology of intensive stage + high⁃intensity proppant injection for shale gas reservoirs[J]. Natural Gas Industry,2019,39(10):76-81. | |
4 | Lolon E, Hamidieh K, Weijers L,et al. Evaluating the relationship between well parameters and production using multivariate statistical models: a middle bakken and three forks case history[C]// SPE. SPE hydraulic fracturing technology conference. The Woodlands, Texas, USA,2016:SPE⁃179171⁃MS. |
5 | Guo Jianchun, Lu Qianli, Zhu Haiyan,et al. Perforating cluster space optimization method of horizontal well multi⁃stage fracturing in extremely thick unconventional gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2015,26(9):1648-1662. |
6 | 孙元伟,程远方,时凤霞,等. 致密气藏压裂水平井产能分析及压裂优化设计[J]. 新疆石油地质,2018,39(6): 727-731. |
Sun Yuanwei, Cheng Yuanfang, Shi Fengxia, et al. Productivity analysis and fracturing design optimization of fractured horizontal well in tight gas reservoirs[J]. Xinjiang Petroleum Geology,2018,39(6): 727-731. | |
7 | 赵金洲,许文俊,李勇明,等. 低渗透油气藏水平井分段多簇压裂簇间距优化新方法[J]. 天然气工业,2016,36(10):63-69. |
Zhao Jinzhou, Xu Wenjun, Li Yongming,et al. A new method for cluster spacing optimization of multi⁃cluster staged fracturing in horizontal wells of low⁃permeability oil and gas reservoirs[J]. Natural Gas Industry, 2016,36(10): 63-69. | |
8 | Daneshy, Ali A J, Thompson T,et al. Fracture shadowing: a direct method for determination of the reach and propagation pattern of hydraulic fractures in horizontal wells[C]//SPE. The SPE hydraulic fracturing technology conference, The Woodlands, Texas, USA,2012: SPE-151980-MS. |
9 | 尹建,郭建春,曾凡辉. 水平井分段压裂射孔间距优化方法[J]. 石油钻探技术,2012,40(5):67-71. |
Yin Jian, Guo Jianchun, Zeng Fanhui. Perforation spacing optimization for staged fracturing of horizontal well[J]. Petroleum Dril⁃ling Techniques,2012,40(5):67-71. | |
10 | 尚立涛,张燕明,王业晗,等.致密油气储层综合可压裂性解释方法在鄂尔多斯盆地的应用[J].石油地质与工程,2021,35(4):38–42. |
Shang Litao, Zhang Yanming, Wang Yehan, et al. Application of comprehensive fracturing interpretation method of tight oil and gas reservoir in Ordos basin[J]. Petroleum Geology & Engineering, 2021, 35(4): 38–42. | |
11 | 王欢,计秉玉,廖新维,等.致密油藏体积压裂水平井压力特征[J].断块油气田,2020,27(2):217-223. |
Wang Huan, Ji Bingyu, Liao Xinwei,et al.Pressure characteristics for volume-fractured horizontal well in tight oil reservoirs[J].Fault-Block Oil and Gas Field,2020,27(2):217-223. | |
12 | 刘学伟.页岩储层水力压裂支撑裂缝导流能力影响因素[J].断块油气田,2020,27(3):394-398. |
Liu Xuewei.Influencing factors of hydraulic propped fracture conductivity in shale reservoir[J].Fault-Block Oil and Gas Field,2020,27(3):394-398. | |
13 | 刘威.固井滑套多簇体积压裂在大牛地气田致密砂岩气藏的应用[J].石油地质与工程,2021,35(3):101–104. |
Liu Wei. Application of cementing sliding sleeve multi cluster volume fracturing in tight sandstone gas reservoir of Daniudi gas field [J]. Petroleum Geo⁃logy & Engineering, 2021, 35(3):101–104. | |
14 | 傅建斌.考虑多因素影响的致密气藏压裂井产能预测方法[J].断块油气田,2021,28(2):156-161. |
Fu Jianbin.Productivity prediction method of fractured wells in tight gas reservoir considering multi factors[J].Fault-Block Oil and Gas Field,2021,28(2):156-161. | |
15 | 黎明,韩丰华,王肃,等. 安棚深层系致密砂岩油藏水平井压裂参数优化设计研究[J].石油地质与工程,2020,34(2):104–108. |
Li Ming, Han Fenghua, Wang Su, et al. Optimal design of horizontal well fracturing parameters in Anpeng deep tight sandstone reservoir[J]. Petroleum Geology & Engineering, 2020, 34(2): 104–108. | |
16 | 赵志恒,郑有成,范宇,等.页岩储集层水平井段内多簇压裂技术应用现状及认识[J].新疆石油地质,2020,41(4):499-504. |
Zhao Zhiheng, Zheng Youcheng, Fan Yu,et al.Application and cognition of multi⁃cluster fracturing technology in horizontal wells in shale reservoirs[J]. Xinjiang Petroleum Geology,2020,41(4):499-504. | |
17 | 陈志明,陈昊枢,廖新维,等.致密油藏压裂水平井缝网系统评价方法——以准噶尔盆地吉木萨尔地区为例[J].石油与天然气地质,2020,41(6):1288-1298. |
Chen Zhiming, Chen Haoshu, Liao Xinwei,et al.Evaluation of fracture networks along fractured horizontal wells in tight oil reservoirs:A case study of Jimusar oilfield in the Junggar Basin[J].Oil & Gas Geology,2020,41(6):1288-1298. | |
18 | 承宁,郭旭洋,魏璞,等. 水平井分段分簇压裂缝间干扰和段间干扰建模:以昌吉油田吉7 井区八道湾组油藏为例[J]. 新疆石油地质,2021,42(4):437-443. |
Cheng Ning, Guo Xuyang, Wei Pu, et al. Inter⁃fracture and inter⁃section interference modeling for staged and clustered fracturing stimulation in horizontal wells: a case study on reservoirs of Badaowan formation in wellblock Ji 7 in Changji oilfield[J]. Xinjiang Petroloeum Geology, 2021,42(4):437-443. | |
19 | Cheng Y. Mechanical interaction of multiple fractures- exploring impacts of the selection of the spacing/number of perforation clusters on horizontal shale⁃gas wells[J]. SPE Journal, 2012,17(4):992-1001. |
20 | Zhu Haiyan, Jin Xiaochun, Guo Jianchun,et al. Coupled flow,stress and damage modelling of interactions between hydraulic fractures and natural fractures in shale gas reservoirs[J]. Oil Gas and Coal Technology, 2016,13(4):359-390. |
21 | Camanho P P, Davila C G, De Moura M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16):1415-1438. |
22 | Li Yang, Deng Jingen, Liu Wei,et al. Numerical simulation of li⁃mited⁃entry multi⁃cluster fracturing in horizontal well[J]. Journal of Petroleum Science & Engineering, 2017,152:443-455. |
23 | Kumar D, Ghassemi A. A three⁃dimensional analysis of simulta⁃neous and sequential fracturing of horizontal wells[J]. Journal of Petroleum Science and Engineering, 2016,146:1006-1025. |
24 | 李杨,邓金根,刘伟,等. 水平井分段多簇限流压裂数值模拟[J]. 断块油气田,2017,24(1):69-73. |
Li Yang, Deng Jingen, Liu Wei,et al. Numerical simulation of li⁃mited entry technique in multi⁃stage and multi⁃cluster horizontal well fracturing[J]. Fault⁃Block Oil & Gas Field,2017,24(1):69-73. | |
25 | Zhu Haiyan, Zhao Xing, Guo Jianchun,et al. Coupled flow⁃stress⁃damage simulation of deviated⁃wellbore fracturing in hard⁃rock[J]. Journal of Natural Gas Science and Engineering,2015,26(9):711-724. |
26 | 连志龙,张劲,吴恒安,等. 水力压裂扩展的流固耦合数值模拟研究[J]. 岩土力学,2008 (11):3021-3026. |
Lian Zhilong, Zhang Jing, Wu Hengan,et al. A simulation study of hydraulic fracturing propagation with a solid⁃fluid coupling model[J]. Rock and Soil Mechanics, 2008(11):3021-3026. | |
27 | Zhu Haiyan, Zhang Xudong, Guo Jianchun,et al. Stress field interference of hydraulic fractures in layered formation[J]. Geomechanics and Engineering,2015,9(5):645-667. |
28 | Zhu Haiyan, Wang Heng, Tang Xuanhe,et al. Hydraulic fracture propagation in sand⁃mudstone interbedded reservoir integrated wi⁃th different fluid flow of multi⁃perforated fractures[C]// ARMA-CUPB Geothermal International Conference. Beijing: 2019. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[5] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[6] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[7] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[8] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[9] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
[10] | 米立军, 徐建永, 李威. 渤海海域页岩油资源潜力[J]. 石油与天然气地质, 2023, 44(6): 1366-1377. |
[11] | 刘惠民, 李政, 包友书, 张守春, 王伟庆, 吴连波, 王勇, 朱日房, 方正伟, 张顺, 刘鹏, 王敏. 渤海湾盆地济阳坳陷高产页岩油井BYP5页岩地质特征[J]. 石油与天然气地质, 2023, 44(6): 1405-1417. |
[12] | 王民, 余昌琦, 费俊胜, 李进步, 张宇辰, 言语, 吴艳, 董尚德, 唐育龙. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452. |
[13] | 李志明, 刘雅慧, 何晋译, 孙中良, 冷筠滢, 李楚雄, 贾梦瑶, 徐二社, 刘鹏, 黎茂稳, 曹婷婷, 钱门辉, 朱峰. 陆相页岩油“甜点”段评价关键参数界限探讨[J]. 石油与天然气地质, 2023, 44(6): 1453-1467. |
[14] | 方志雄, 肖秋生, 张殿伟, 段宏亮. 苏北盆地陆相“断块型”页岩油地质特征及勘探实践[J]. 石油与天然气地质, 2023, 44(6): 1468-1478. |
[15] | 李明, 王民, 张金友, 张宇辰, 刘召, 雒斌, 卞从胜, 李进步, 王鑫, 赵信斌, 董尚德. 中国典型盆地陆相页岩油组分评价及意义[J]. 石油与天然气地质, 2023, 44(6): 1479-1498. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||