石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (3): 528-541.doi: 10.11743/ogg20220304
收稿日期:
2021-03-14
修回日期:
2022-03-14
出版日期:
2022-06-01
发布日期:
2022-05-06
第一作者简介:
胡文革(1966—),男,博士、教授级高级工程师,油气藏开发。E?mail: 基金项目:
Received:
2021-03-14
Revised:
2022-03-14
Online:
2022-06-01
Published:
2022-05-06
摘要:
沿走滑断裂带分布的中、下奥陶统碳酸盐岩油气藏,是塔里木盆地顺北地区勘探开发的主要目标,其地质储量丰富,开发前景广阔。走滑断裂带不同部位油气充注效率差异性较大,如何精准评价与描述充注效率优势部位,加快规模增储上产,提升勘探开发效率与效益,已成为制约顺北地区高效勘探开发的关键。基于顺北地区1号和5号断裂带“断层-储层”关系研究,首次探讨了影响顺北走滑断裂带油气充注效率的主要因素,包括断裂带内部结构、局部应变强度和现今地应力的大小及方向,并据此提出了“充注体”概念,进而半定量评价了断裂带不同部位垂向油气输导强度。该评价方法目前已成功应用在顺北地区5号断裂带上,评价结果与实际生产数据高度吻合。该方法不仅为断裂带分段评价和油气垂向输导“高速通道”的描述提供了有力的理论支撑,而且对顺北地区快速规模增储、实现稀井高产具有重要意义。
中图分类号:
1 | 赵锐, 赵腾, 李慧莉, 等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019, 26(5): 8-13. |
Zhao Rui, Zhao Teng, Li Huili, et al. Fault‑controlled fracture⁃cavity reservoir characterization and main‑controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 8-13. | |
2 | 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 38-48. |
Deng Shang, Li Huili, Zhang Zhongpei, et al. Characteristics of differential activities in major strike‑slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundi⁃ngs, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 38-48. | |
3 | 胡文革. 塔河碳酸盐岩缝洞型油藏开发技术及攻关方向[J]. 油气藏评价与开发, 2020, 10(2): 1-10. |
Hu Wenge. Development technology and research direction of fractured‑vuggy carbonate reservoirs in Tahe Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(2): 1-10. | |
4 | 林波,云露,李海英 等.塔里木盆地顺北5号走滑断层空间结构及其油气关系[J].石油与天然气地质,2021,42(6):1344-1353. |
Lin Bo, Yun Lu, Li Haiying, et al. Spatial structure of Shunbei No.5 strike‑slip fault and its relationship with oil and gas reservoirs in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42(6): 1344-1353. | |
5 | 林波,云露,张旭,等.一种板内小尺度走滑断层平面分段研究方法:以塔里木盆地顺北5号断层中北段为例[J].吉林大学学报(地球科学版), 2021, 51(4): 1006-1018. |
Lin Bo, Yun Lu, Zhang Xu, et al. A method for plane segmentation of small‑scale intraplate strike‑slip faults: A case of the Mid⁃dle‑North segment of Shunbei No. 5 Fault in TarimBasin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(4): 1006-1018. | |
6 | 韩俊,况安鹏,能源,等.顺北5号走滑断裂带纵向分层结构及其油气地质意义[J].新疆石油地质, 2021, 42(2): 152-160. |
Han Jun, Kuang Anpeng, Yuan Neng,et al. Vertical layered structure of Shunbei No.5 strike‑slip fault zone and its significance on hydrocarbon accumulation[J].Xinjiang Petroleum Geology, 2021, 42(2): 152-160. | |
7 | 罗明霞, 夏永涛, 邵小明, 等. 塔里木盆地顺北油气田不同层系原油地球化学特征对比及成因分析[J]. 石油实验地质, 2019, 41(6): 849-854. |
Luo Mingxia, Xia Yongtao, Shao Xiaoming, et al. Geochemical characteristics and origin of oil from different strata in Shunbei oil and gas field, Tarim Basin[J]. Petroleum Geology and Experiment, 2019, 41(6): 849-854. | |
8 | 谷茸, 云露, 朱秀香, 等. 塔里木盆地顺北油田油气来源研究[J]. 石油实验地质, 2020, 42(2): 248-254+262. |
Gu Rong, Yun Lu, Zhu Xiuxiang, et al. Oil and gas sources in Shunbei Oilfield, Tarim Basin[J]. Petroleum Geology and Experiment, 2020, 42(2): 248-254+262. | |
9 | 曹自成,路清华,顾忆,等.塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征[J].石油与天然气地质,2020,41(5):975-984. |
Cao Zicheng, Lu Qinghua, Gu Yi, et al. Characteristics of Ordovician reservoirs in Shunbei 1 and 5 fault zones, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 975-984. | |
10 | 云露.顺北地区奥陶系超深断溶体油气成藏条件[J].新疆石油地质, 2021, 42(2): 136-142. |
Yun Lu.Hydrocarbon accumulation of ultra‑deep Ordovician fault⁃karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2): 136-142. | |
11 | 韩强,云露,蒋华山,等.塔里木盆地顺北地区奥陶系油气充注过程分析[J].吉林大学学报(地球科学版), 2021, 51(3): 645-658. |
Han Qiang, Yun Lu, Jiang Huashan, et al. Marine oil and gas filli⁃ng and accumulation process in the North of Shuntuoguole area in Northern Tarim Basin[J]. Journal of Jilin University (Earth Scie⁃nce Edition), 2021, 51(3): 645-658. | |
12 | 吕海涛,韩俊,张继标,等.塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J].石油实验地质, 2021, 43(1): 14-22. |
Haitao Lü, Han Jun, Zhang Jibiao, et al. Development characteri⁃stics and formation mechanism of ultra‑deep carbonate fault⁃dissolution body in Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 14-22. | |
13 | 瞿长,赵锐,李慧莉,等.塔里木盆地顺北5断裂带储集体地震反射与产能特征分析[J].特种油气藏, 2020, 27(1): 68-74. |
Qu Chang, Zhao Rui, Li Huili, et al. Seismic reflection and productivity of reservoirs in the Fault‑Zone 5 of Shunbei, Tarim Basin[J]. Special Oil & Gas Reserviors, 2020, 27(1): 68-74. | |
14 | 文山师,李海英,洪才均,等.顺北油田断溶体储层地震响应特征及描述技术[J].断块油气田,2020, 27(1): 45-49. |
Wen Shanshi, LI Haiying, Hong Caijun, et al. Technology of seismic response characteristics and description of fault‑karst reservoir in Shunbei Oilfield[J]. Fault‑Block Oil and Gas Field, 2020, 27(1): 45-49. | |
15 | 赵锐, 赵腾, 李慧莉, 等. 塔里木盆地顺托果勒地区中下奥陶统鹰山组与一间房组沉积相与旋回地层[J]. 东北石油大学学报, 2019, 43(4): 1-16+139. |
Zhao Rui, Zhao Teng, LI Huili, et al. Sedimentary facies and cyclic stratigraphy of Yingshan and Yijianfang Formations of Lower⁃Middle Ordovician in Shuntuoguole area, Tarim Basin[J]. Journal of Northeast Petroleum University, 2019, 43(4): 1-16+139. | |
16 | Deng Shang, Li Huili, Zhang Zhongpei, et al. Structural characterization of intracratonic strike‑slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137. |
17 | 邓尚, 李慧莉, 韩俊, 等. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J]. 石油与天然气地质, 2019, 40(5): 990-998+1073. |
Deng Shang, Li Huili, Han Jun, et al. Characteristics of the central segment of Shunbei 5 strike-slip fault zone in Tarim Basin and its geological significance[J]. Oil & Gas Geology, 2019, 40(5): 990-998+1073. | |
18 | 程传捷,于炳松,武重阳,等.塔里木盆地顺北地区奥陶系一间房组碳酸盐岩成岩相研究[J].石油实验地质, 2020, 42(1): 42-52. |
Cheng Chuanjie, Yu Bingsong, Wu Chongyang, et al.Diagenetic facies of carbonate rocks in Yijianfang Formation, Shunbei area, Tarim Basin[J].Petroleum Geology & Experiment, 2020, 42(1): 42-52. | |
19 | 陈菁萍,赵腾,肖重阳,等.塔里木盆地顺北地区中下奥陶统走滑断裂差异成岩作用[J].东北石油大学学报,2020, 44(5): 23-34+58+6. |
Chen Jingping, Zhao Teng, Xiao Chongyang, et al. Differential diagenesis of Ordovician strike slip faults in Shunbei area of Tarim Basin[J]. Journal of Northeast Petroleum University, 2020, 44(5): 23-34+58+6. | |
20 | 隋欢, 张哨楠. 塔里木盆地顺北一号断裂带奥陶系一间房组碳酸盐岩储层主控因素研究[C]// 第十五届全国古地理学及沉积学学术会议摘要集. 成都: 中国矿物岩石地球化学学会, 2018. |
Sui Huan, Zhang Shaonan. Research on main control factors of carbonate reservoir of Ordovician Yijianfang Formation in Shunbei 1 fault zone, Tarim Basin[C]// Summary of the 15th National Conference on paleogeography and Sedimentology. Chengdu: Chinese Society for Mineralogy Petrology and Geochemistry, 2018. | |
21 | 李映涛, 漆立新, 张哨楠, 等. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报, 2019, 40(12): 1470-1484. |
Li Yingtao, Qi Lixin, Zhang Shaonan, et al. Characteristics and development mode of the Middle and Lower Ordovician fault‑karst reservoir in Shunbei area,Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1470-1484. | |
22 | Zoback M D. Reservoir geomechanics: Cambridge[M]. Cambridge University Press, 2007: 449-450. |
23 | Barton C A, Zoback M D, Moos D. Fluid flow along potentially active faults in crystalline rock[J]. Geology, 1995, 23(8): 683-686. |
24 | Morris A, Ferrill D A, Henderson D B. Slip‑tendency analysis and fault reactivation[J]. Geology, 1996, 24(3): 275-278. |
25 | 漆立新.塔里木盆地顺北超深断溶体油藏特征与启示[J].中国石油勘探, 2020, 25(1): 102-111. |
Qi Lixin. Characteristics and inspiration of ultra‑deep fault‑karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111. | |
26 | 胡再元,孙东,胡圆圆,等.断裂系统对碳酸盐岩储层的控制作用——以塔里木盆地塔中Ⅲ区奥陶系为例[J].天然气地球科学,2015, 26(S1): 97-108. |
Hu Zaiyuan, Sun Dong, Hu Yuanyuan, et al. Control effect of fracture system on carbonate reservoir — Taking Ordovician system in TazhongⅢarea of Tarim Basin as an example[J]. Natural Gas Geoscience, 2015, 26(S1): 97-108. | |
27 | 刘宝增.塔里木盆地顺北地区油气差异聚集主控因素分析——以顺北1号、顺北5号走滑断裂带为例[J].中国石油勘探, 2020, 25(3): 83-95. |
Liu Baozeng. Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area, Tarim Basin-taking Shunbei No.1 and No.5 strike slip fault zones as examples[J]. China Petroleum Exploration, 2020, 25(3): 83-95. | |
28 | 曹厚臻,何丽娟,张林友.塔里木克拉通形成以来的背景热史研究[J].地球物理学报,2019, 62(1): 236-247. |
Cao Houzhen, He Lijuan, Zhang Linyou. Inversion of background thermal history since the formation of the Tarim Craton[J]. Chinese Journal of Geophysics, 2019, 62(1): 236-247. | |
29 | 黄诚.叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别—以塔里木盆地顺北地区为例[J].石油实验地质,2019, 41(3): 379-389. |
Huang Cheng. Multi‑stage activity characteristics of small‑scale strike‑slip faults in superimposed basin and its identification me⁃thod: A case study of Shunbei area, Tarim Basin[J]. Petroleum Geology and Experiment, 2019, 41(3): 379-389. | |
30 | 焦方正.塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J].石油与天然气地质,2017, 38(5): 831-839. |
Jiao Fangzheng. Significance of oil and gas exploration in NE strike‑slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839. | |
31 | Byerlee J. Friction of rocks[J]. Pure and Applied Geophysics, 1978, 116(4-5), 615-626. |
32 | Ferrill D A, Morris A P, Hennings P H, et al. Faulting and fracturing in shale and self‑sourced reservoirs: Introduction[J]. AAPG Bulletin,2014, 98(11): 2161-2164. |
33 | Belgrano T M, Herwegh M, Berger A. Inherited structural controls on fault geometry, architecture and hydrothermal activity: An example from Grimsel Pass, Switzerland[J]. Swiss Journal of Geosciences, 2016, 109(3): 345-364. |
34 | Baietto A, Perello P, Cadoppi P, et al. Alpine tectonic evolution and thermal water circulations of the Argentera Massif (South⁃Wes⁃tern Alps)[J]. Swiss Journal of Geosciences, 2009, 102(2): 223-245. |
35 | Caine J S, Evans J P, Forster C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11): 1025-1028. |
36 | Evans J P, Forster C B, Goddard J V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones[J]. Journal of Structural Geology, 1997, 19(11): 1393-1404. |
37 | Faulkner D R, Jackson C A L, Lunn R J, et al. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones[J]. Journal of Structural Geology, 2010. 32(11), 1557-1575. |
38 | Burnside N M, Shipton Z K, Dockrill B, et al. Man‑made versus natural CO2 leakage: A 400 k.y. history of an analogue for engineered geological storage of CO2 [J]. Geology, 2013, 41(4): 471-474. |
39 | Ben, Dockrill, Shipton Z K. Structural controls on leakage from a natural CO2 geologic storage site: Central Utah, U.S.A.[J]. Journal of Structural Geology, 2010.32(11): 1768-1782. |
40 | Walker R J, Holdsworth R E, Armitage P J, et al. Fault zone permeability structure evolution in basalts[J]. Geology, 2012, 41(1): 59-62. |
41 | Eichhubl P, Davatz N C, Becker S P. Structural and diagenetic control of fluid migration and cementation along the Moab fault, Utah[J]. AAPG Bulletin, 2009, 93(5): 653-681. |
42 | Annunziatellis A, Beaubien S E, Bigi S, et al. Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): Implications for CO2 geological storage[J]. International Journal of Greenhouse Gas Control, 2008, 2(3):353-372. |
43 | Sibson R H. Brecciation processes in fault zones: Inferences from earthquake rupturing[J]. Pure & Applied Geophysics, 1986, 124(1):159-175. |
44 | Perello P, Marini L, Martinotti G, et al. The thermal circuits of the Argentera Massif (western Alps, Italy): An example of low⁃enthalpy geothermal resources controlled by Neogene alpine tectonics[J]. Eclogae Geologicae Helvetiae, 2001, 94(1):75-94. |
45 | Micklethwaite S, Ford A, Witt W, et al. The where and how of faults, fluids and permeability-insights from fault stepovers, scali⁃ng properties and gold mineralisation[J]. Geofluids, 2015, 15(1-2): 240-251. |
46 | Crider J G. The initiation of brittle faults in crystalline rock[J]. Journal of Structural Geology, 2015, 77: 159-174. |
47 | Tripp G I, Vearncombe J R. Fault/fracture density and mineralization: A contouring method for targeting in gold exploration[J]. Journal of Structural Geology, 2004, 26(6-7): 1087-1108. |
48 | Soden A M, Shipton Z K, Lunn R J, et al. Brittle structures focused on subtle crustal heterogeneities: Implications for flow in fractured rocks[J]. Journal of the Geological Society, 2014, 171(4): 509-524. |
49 | Odling N E, Harris S D, Knipe R J. Permeability scaling properties of fault damage zones in siliclastic rocks[J]. Journal of Structural Geology, 2004, 26(9): 1727-1747. |
50 | Laubach S E, Eichhubl P, Hargrove P, et al. Fault core and dama⁃ge zone fracture attributes vary along strike owing to interaction of fracture growth, quartz accumulation, and differing sandstone composition[J]. Journal of Structural Geology, 2014, 68: 207-226. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[8] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[9] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[10] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[11] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
[12] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[13] | 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜—大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. |
[14] | 李斌, 赵星星, 邬光辉, 韩剑发, 关宝珠, 沈春光. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质, 2023, 44(2): 308-320. |
[15] | 张红波, 周雨双, 沙旭光, 邓尚, 沈向存, 姜忠正. 塔里木盆地顺北5号走滑断裂隆起段发育特征与演化机制[J]. 石油与天然气地质, 2023, 44(2): 321-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||