石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (6): 1998-2011.doi: 10.11743/ogg20250616
王恩泽1,2,3(
), 黎茂稳1,2,3(
), 唐勇4, 马晓潇1,2,3, 钱门辉1,2,3, 曹婷婷1,2,3, 李志明1,2,3, 付英潇5, 金之钧6
收稿日期:2025-04-25
修回日期:2025-07-28
出版日期:2025-12-30
发布日期:2025-12-25
通讯作者:
黎茂稳
E-mail:wangenze9939@163.com;limw.syky@sinopec.com
第一作者简介:王恩泽(1995—),男,博士、助理研究员,石油地质学。E-mail: wangenze9939@163.com。
基金项目:
Enze WANG1,2,3(
), Maowen LI1,2,3(
), Yong TANG4, Xiaoxiao MA1,2,3, Menhui QIAN1,2,3, Tingting CAO1,2,3, Zhiming LI1,2,3, Yingxiao FU5, Zhijun JIN6
Received:2025-04-25
Revised:2025-07-28
Online:2025-12-30
Published:2025-12-25
Contact:
Maowen LI
E-mail:wangenze9939@163.com;limw.syky@sinopec.com
摘要:
陆相页岩油气是中国目前油气增储上产的重要领域,精细的地质甜点评价是高效立体开发的前提。准噶尔盆地吉木萨尔凹陷二叠系芦草沟组是中国三大页岩油产能示范区之一。为明确芦草沟组页岩油资源前景和甜点分布,为后续立体开发提供理论支撑,在精细研究芦草沟组地质特征的基础上,开展了“四性”评价,研究提出了定量评价页岩油资源质量的甜点指数,系统划分了岩相及岩相组合,定量评价了不同岩相组合勘探潜力,确定了甜点层纵向分布。研究结果表明:①根据矿物组成、有机质丰度和沉积构造,芦草沟组可划分为11个岩相。②依据岩相组合关系划分出4种岩相组合,其中纹层状富有机质泥岩(灰云岩)和纹层状富有机质粉砂岩组合及纹层状富有机质泥岩(灰云岩)、纹层状富有机质粉砂岩和块状富(贫)有机质粉砂岩(泥岩)组合中的纹层状富有机质泥质粉砂岩是最有利的页岩油勘探岩相。③纹层状富有机质泥岩(灰云岩)组合中部分纹层状富有机质长英质泥岩和纹层状富有机质混合泥岩具有良好的勘探潜力。④芦草沟组中“源-储共生”和“源-储一体”型页岩油是有利勘探目标。⑤芦草沟组中发育多套甜点层,页岩油甜点层的资源潜力都不应忽视。⑥在面对甜点多层叠置的陆相页岩油系统时,应当在精细地质评价基础之上,采用立体开发手段降低成本。
中图分类号:
表1
准噶尔盆地吉木萨尔凹陷J1X井芦草沟组不同岩相页岩部分地质特征"
| 岩相 | TOC/% | S1/(mg/g) | OSI/ (mg/g) | 脆性矿物含量 /% | 孔隙度/% |
|---|---|---|---|---|---|
| 纹层状富有机质混合泥岩 | 2.01 ~ 10.55 (6.48) | 0.88 ~ 19.06 (4.76) | 9 ~ 413 (103) | 59.4 ~ 91.5 (80.0) | 3.0 ~ 19.9 (11.2) |
| 纹层状富有机质长英质泥岩 | 2.03 ~ 9.21 (4.45) | 0.79 ~ 20.79 (7.36) | 12 ~ 476 (221) | 63.3 ~ 89.6 (82.7) | 2.6 ~ 23.0 (12.7) |
| 块状富有机质长英质泥岩 | 2.19 ~ 3.05 (2.64) | 1.51 ~ 12.02 (5.91) | 53 ~ 426 (223) | 70.3 ~ 88.7 (83.5) | 7.0 ~ 20.3 (14.5) |
| 块状贫有机质混合泥岩 | 0.21 ~ 2.00 (1.15) | 0.01 ~ 8.91 (2.34) | 5 ~ 446 (145) | 56.7 ~ 91.5 (76.7) | 2.0 ~ 20.6 (10.9) |
| 块状贫有机质长英质泥岩 | 0.80 ~ 1.70 (1.34) | 3.38 ~ 6.27 (4.34) | 199 ~ 520 (348) | 72.7 ~ 92.6 (84.5) | 4.5 ~ 12.5 (8.7) |
| 纹层状富有机质泥质灰云岩 | 2.14 ~ 11.79 (5.60) | 0.57 ~ 15.24 (3.80) | 10 ~ 618 (105) | 84.4 ~ 96.4 (90.6) | 3.3 ~ 22.7 (13.5) |
| 块状富有机质泥质灰云岩 | 2.52 | 10.39 | 412 | 93.8 | — |
| 块状贫有机质泥质灰云岩 | 1.15 ~ 1.37 (1.27) | 0.12 ~ 1.63 (0.88) | 9 ~ 142 (75) | 85.3 ~ 86.9 (86.1) | 31.7 |
| 纹层状富有机质泥质粉砂岩 | 2.15 ~ 3.97 (3.01) | 0.41 ~ 18.19 (10.00) | 19 ~ 536 (332) | 71.7 ~ 94.3 (86.5) | 4.4 ~ 23.9 (14.6) |
| 块状富有机质泥质粉砂岩 | 2.86 ~ 3.16 (3.01) | 4.70 ~ 8.78 (6.64) | 157 ~ 278 (218) | 84.5 ~ 89.1 (86.8) | 13 |
| 块状贫有机质泥质粉砂岩 | 0.84 ~ 1.93 (1.30) | 0.48 ~ 5.79 (2.36) | 37 ~ 365 (179) | 67.5 ~ 92.2 (77.9) | 2.4 ~ 15.6 (9.5) |
表2
准噶尔盆地吉木萨尔凹陷J1X井芦草沟组不同岩相页岩“四性”特征"
| 岩相 | 可压性指数 | 含油性指数 | 可动性指数 | 储集性指数 |
|---|---|---|---|---|
| 纹层状富有机质混合泥岩 | 0.068 ~ 0.876 (0.592) | 0.042 ~ 0.917 (0.249) | 0.007 ~ 0.665 (0.177) | 0.034 ~ 0.697 (0.332) |
| 纹层状富有机质长英质泥岩 | 0.166 ~ 0.829 (0.654) | 0.038 ~ 1.000 (0.354) | 0.011 ~ 0.767 (0.351) | 0.020 ~ 0.694 (0.351) |
| 块状富有机质长英质泥岩 | 0.343 ~ 0.806 (0.674) | 0.072 ~ 0.576 (0.284) | 0.080 ~ 0.687 (0.356) | 0.168 ~ 0.616 (0.419) |
| 块状贫有机质混合泥岩 | 0.000 ~ 0.876 (0.503) | 0.000 ~ 0.428 (0.112) | 0.000 ~ 0.718 (0.229) | 0.000 ~ 0.626 (0.299) |
| 块状贫有机质长英质泥岩 | 0.403 ~ 0.904 (0.701) | 0.162 ~ 0.301 (0.208) | 0.316 ~ 0.839 (0.560) | 0.084 ~ 0.354 (0.227) |
| 纹层状富有机质泥质灰云岩 | 0.741 ~ 1.000 (0.861) | 0.027 ~ 0.733 (0.159) | 0.009 ~ 1.000 (0.146) | 0.044 ~ 0.697 (0.380) |
| 块状富有机质泥质灰云岩 | 0.935 | 0.500 | 0.664 | — |
| 块状贫有机质泥质灰云岩 | 0.720 ~ 0.761 (0.741) | 0.005 ~ 0.078 (0.042) | 0.006 ~ 0.223 (0.115) | 1.000 |
| 纹层状富有机质泥质粉砂岩 | 0.378 ~ 0.947 (0.752) | 0.019 ~ 0.875 (0.481) | 0.023 ~ 0.866 (0.533) | 0.008 ~ 0.738 (0.424) |
| 块状富有机质泥质粉砂岩 | 0.700 ~ 0.816 (0.758) | 0.216 ~ 0.442 (0.319) | 0.249 ~ 0.445 (0.347) | 0.370 |
| 块状贫有机质泥质粉砂岩 | 0.272 ~ 0.894 (0.534) | 0.023 ~ 0.278 (0.113) | 0.053 ~ 0.587 (0.285) | 0.013 ~ 0.458 (0.253) |
| [1] | JARVIE D M. Shale resource systems for oil and gas: Part 2—Shale-oil resource systems[M]//BREYER J A. Shale Reservoirs—Giant Resources for the 21st Century. Tulsa: American Association of Petroleum Geologists, 2012: 89-119. |
| [2] | KATZ B, LIN Fang. Lacustrine basin unconventional resource plays: Key differences[J]. Marine and Petroleum Geology, 2014, 56: 255-265. |
| [3] | 朱筱敏, 王晓琳, 张美洲, 等. 中国典型陆相盆地细粒沉积环境和岩相特征[J]. 石油与天然气地质, 2024, 45(4): 873-892. |
| ZHU Xiaomin, WANG Xiaolin, ZHANG Meizhou, et al. Sedimentary environments and lithofacies characteristics of fine-grained sediments in typical continental basins in China[J]. Oil & Gas Geology, 2024, 45(4): 873-892. | |
| [4] | 马永生, 蔡勋育, 赵培荣, 等. 中国陆相页岩油地质特征与勘探实践[J]. 地质学报, 2022, 96(1): 155-171. |
| MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al. Geological characteristics and exploration practices of continental shale oil in China[J]. Acta Geologica Sinica, 2022, 96(1): 155-171. | |
| [5] | 黎茂稳, 马晓潇, 金之钧, 等. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. |
| LI Maowen, MA Xiaoxiao, JIN Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J]. Oil & Gas Geology, 2022, 43(1): 1-25. | |
| [6] | 王恩泽, 郭彤楼, 刘波, 等. 海陆过渡相页岩岩相、孔隙特征及有利岩相富气条件——以四川盆地东南缘林滩场地区二叠系龙潭组为例[J]. 石油勘探与开发, 2022, 49(6): 1132-1142. |
| WANG Enze, GUO Tonglou, LIU Bo, et al. Lithofacies and pore features of marine-continental transitional shale and gas enrichment conditions of favorable lithofacies: A case study of Permian Longtan Formation in the Lintanchang area, southeast of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2022, 49(6): 1132-1142. | |
| [7] | WANG Enze, FENG Yue, GUO Tonglou, et al. Oil content and resource quality evaluation methods for lacustrine shale: A review and a novel three-dimensional quality evaluation model[J]. Earth-Science Reviews, 2022, 232: 104134. |
| [8] | 郭旭升, 马晓潇, 黎茂稳, 等. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
| GUO Xusheng, MA Xiaoxiao, LI Maowen, et al. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins[J]. Oil & Gas Geology, 2023, 44(6): 1333-1349. | |
| [9] | WANG Enze, LI Maowen, MA Xiaoxiao, et al. Diahopane and diasterane as the proxies for paleoenvironment, hydrocarbon generation condition, and shale oil accumulation[J]. Chemical Geology, 2024, 670: 122447. |
| [10] | WANG Enze, FU Yingxiao, GUO Tonglou, et al. A new approach for predicting oil mobilities and unveiling their controlling factors in a lacustrine shale system: Insights from interpretable machine learning model[J]. Fuel, 2025, 379: 132958. |
| [11] | EIA. How much shale (tight) oil is produced in the United States?[EB/OL]. (2024-03-28)[2025-07-28]. . |
| [12] | 黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28. |
| LI Maowen, MA Xiaoxiao, JIANG Qigui, et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 13-28. | |
| [13] | 赵文智, 朱如凯, 刘伟, 等. 我国陆相中高熟页岩油富集条件与分布特征[J]. 地学前缘, 2023, 30(1): 116-127. |
| ZHAO Wenzhi, ZHU Rukai, LIU Wei, et al. Lacustrine medium-high maturity shale oil in onshore China: Enrichment conditions and occurrence features[J]. Earth Science Frontiers, 2023, 30(1): 116-127. | |
| [14] | 人民日报. 中国油气总产量首超4亿吨油当量 其中原油产量接近历史峰值[EB/OL]. (2025-01-24)[2025-07-28]. . |
| Daily People’s. China’s total oil and gas production exceeds 400 million tons of oil equivalent for the first time, with crude oil production approaching historical peaks[EB/OL]. (2025-01-24)[2025-07-28]. . | |
| [15] | HUGHES J D. A reality check on the shale revolution[J]. Nature, 2013, 494(7437): 307-308. |
| [16] | 孙龙德, 刘合, 朱如凯, 等. 中国页岩油革命值得关注的十个问题[J]. 石油学报, 2023, 44(12): 2007-2019. |
| SUN Longde, LIU He, ZHU Rukai, et al. Ten noteworthy issues on shale oil revolution in China[J]. Acta Petrolei Sinica, 2023, 44(12): 2007-2019. | |
| [17] | 曹元婷, 潘晓慧, 李菁, 等. 关于吉木萨尔凹陷页岩油的思考[J]. 新疆石油地质, 2020, 41(5): 622-630. |
| CAO Yuanting, PAN Xiaohui, LI Jing, et al. Discussion on shale oil in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2020, 41(5): 622-630. | |
| [18] | 郭晨光, 冯立勇, 梁晓伟, 等. 鄂尔多斯盆地夹层型页岩油水平井递减规律研究[C]//上海联合非常规能源研究中心, 上海科学技术交流中心. ECF2024第十四届亚太页岩油气暨非常规能源大会论文集, 上海, 2024. 庆阳: 中国石油长庆油田分公司页岩油开发分公司, 2024: 64-74. |
| GUO Chenguang, FENG Liyong, LIANG Xiaowei, et al. Research on the decline law of horizontal wells in interlayer shale oil in the Ordos Basin[C]//Shanghai United Unconventional Energy Research Center, Shanghai Science and Technology Exchange Center. Proceedings of the 14th Asia Pacific Shale Oil and Gas and Unconventional Energy Conference ECF 2024, Shanghai, 2024. Qingyang: China Petroleum Changqing Oilfield Branch Shale Oil Development Branch, 2024: 64-74. | |
| [19] | MCMAHON T P, LARSON T E, ZHANG T, 等. 美国页岩油气地质特征及勘探开发进展[J]. 石油勘探与开发, 2024, 51(4): 807-828. |
| MCMAHON T P, LARSON T E, ZHANG T, et al. Geologic characteristics, exploration and production progress of shale oil and gas in the United States: An overview[J]. Petroleum Exploration and Development, 2024, 51(4): 807-828. | |
| [20] | 孙焕泉, 王海涛, 杨勇, 等. 陆相断陷湖盆页岩油开发技术迭代与发展方向[J]. 石油勘探与开发, 2024, 51(4): 865-877. |
| SUN Huanquan, WANG Haitao, YANG Yong, et al. Iteration and evaluation of shale oil development technology for continental rift lake basins[J]. Petroleum Exploration and Development, 2024, 51(4): 865-877. | |
| [21] | 赵明昊, 靳昊, 孙金行. 我国首个国家级陆相页岩油示范区年产突破百万吨[N]. 光明日报, 2024-11-27(04). |
| ZHAO Minghao, JIN Hao, SUN Jinhang. The first national level terrestrial shale oil demonstration zone in China has achieved an annual output exceeding one million tons[N]. Guangming Daily, 2024-11-27(04). | |
| [22] | 匡立春, 唐勇, 雷德文, 等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发, 2012, 39(6): 657-667. |
| KUANG Lichun, TANG Yong, LEI Dewen, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(6): 657-667. | |
| [23] | 支东明, 唐勇, 杨智峰, 等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 524-534. |
| ZHI Dongming, TANG Yong, YANG Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534. | |
| [24] | WANG Yuce, CAO Jian, TAO Keyu, et al. Reevaluating the source and accumulation of tight oil in the middle Permian Lucaogou Formation of the Junggar Basin, China[J]. Marine and Petroleum Geology, 2020, 117: 104384. |
| [25] | DING Wenjing, HOU Dujie, LI Li, et al. Reconstructing the palaeoecology of a middle Permian alkaline lake using molecular fossils, case study of the Lucaogou Formation in the Junggar Basin, NW China[J]. Organic Geochemistry, 2024, 193: 104791. |
| [26] | 刘诗局. 吉木萨尔凹陷芦草沟组页岩油差异性富集机理[D]. 北京: 中国石油大学(北京), 2023. |
| LIU Shiju. A study on differential enrichment of shale oil in Lucaogou Formation, Jimsaer Sag[D]. Beijing: China University of Petroleum (Beijing), 2023. | |
| [27] | 蒋宜勤, 柳益群, 杨召, 等. 准噶尔盆地吉木萨尔凹陷凝灰岩型致密油特征与成因[J]. 石油勘探与开发, 2015, 42(6): 741-749. |
| JIANG Yiqin, LIU Yiqun, YANG Zhao, et al. Characteristics and origin of tuff-type tight oil in Jimusar Depression, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(6): 741-749. | |
| [28] | LIU Shiju, MISCH D, GANG Wenzhe, et al. Evaluation of the tight oil “sweet spot” in the Middle Permian Lucaogou Formation (Jimusaer Sag, Junggar Basin, NW China): Insights from organic petrology and geochemistry[J]. Organic Geochemistry, 2023, 177: 104570. |
| [29] | IQBAL M A, REZAEE R, SMITH G, et al. Shale lithofacies controls on porosity and pore structure: An example from Ordovician Goldwyer Formation, Canning Basin, Western Australia[J]. Journal of Natural Gas Science and Engineering, 2021, 89: 103888. |
| [30] | 金之钧, 张谦, 朱如凯, 等. 中国陆相页岩油分类及其意义[J]. 石油与天然气地质, 2023, 44(4): 801-819. |
| JIN Zhijun, ZHANG Qian, ZHU Rukai, et al. Classification of lacustrine shale oil reservoirs in China and its significance[J]. Oil & Gas Geology, 2023, 44(4): 801-819. | |
| [31] | 李志明, 刘雅慧, 何晋译, 等. 陆相页岩油 “甜点” 段评价关键参数界限探讨[J]. 石油与天然气地质, 2023, 44(6): 1453-1467. |
| LI Zhiming, LIU Yahui, HE Jinyi, et al. Limits of critical parameters for sweet-spot interval evaluation of lacustrine shale oil[J]. Oil & Gas Geology, 2023, 44(6): 1453-1467. | |
| [32] | WANG Enze, GUO Tonglou, LI Maowen, et al. Favorable exploration lithofacies and their formation mechanisms in lacustrine shales deposited under different salinity conditions: Insights into organic matter accumulation and pore systems[J]. Energy and Fuels, 2023, 37(16): 11838-11852. |
| [33] | 谭强, 马迪娜·马提吾汗, 岳红星, 等. 吉木萨尔凹陷芦草沟组致密油藏原油物性垂向倒置原因分析[J]. 新疆石油天然气, 2019, 15(4): 1-5. |
| TAN Qiang, MADINA·Matiwuhan, YUE Hongxing, et al. Reason of vertical inversion of crude oil physical properties in Lucaogou tight reservoir in Jimusar Sag[J]. Xinjiang Oil & Gas, 2019, 15(4): 1-5. | |
| [34] | 刘胜男, 朱如凯, 靳军, 等. 油气运移约束陆相页岩油富集——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 石油学报, 2024, 45(6): 932-946. |
| LIU Shengnan, ZHU Rukai, JIN Jun, et al. Hydrocarbon migration constraints on continental shale oil enrichment: A case study of Lucaogou Formation in Jimusaer sag, Junggar Basin[J]. Acta Petrolei Sinica, 2024, 45(6): 932-946. | |
| [35] | LI Zheng, ZOU Yanrong, XU Xingyou, et al. Adsorption of mudstone source rock for shale oil-Experiments, model and a case study[J]. Organic Geochemistry, 2016, 92: 55-62. |
| [36] | 郭彤楼, 熊亮, 叶素娟, 等. 输导层 (体) 非常规天然气勘探理论与实践——四川盆地新类型页岩气与致密砂岩气突破的启示[J]. 石油勘探与开发, 2023, 50(1): 24-37. |
| GUO Tonglou, XIONG Liang, YE Sujuan, et al. Theory and practice of unconventional gas exploration in carrier beds: Insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(1): 24-37. | |
| [37] | 齐洪岩, 王振林, 张艳宁, 等. 吉木萨尔凹陷芦草沟组页岩油藏甜点分类[J]. 新疆石油地质, 2025, 46(2): 127-135. |
| QI Hongyan, WANG Zhenlin, ZHANG Yanning, et al. Classification of sweet spots in shale oil reservoir of Lucaogou Formation in Jimsar Sag, Jurggar Basin[J]. Xinjiang Petroleum Geology, 2025, 46(2): 127-135. | |
| [38] | 孙焕泉, 蔡勋育, 胡德高, 等. 页岩气立体开发理论技术与实践——以四川盆地涪陵页岩气田为例[J]. 石油勘探与开发, 2023, 50(3): 573-584. |
| SUN Huanquan, CAI Xunyu, HU Degao, et al. Theory, technology and practice of shale gas three-dimensional development: A case study of Fuling shale gas field in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(3): 573-584. | |
| [39] | 杨勇, 张世明, 吕琦, 等. 中国东部陆相断陷盆地页岩油开发理论认识与技术实践——以济阳页岩油为例[J]. 油气地质与采收率, 2024, 31(5): 1-15. |
| YANG Yong, ZHANG Shiming, Qi LYU, et al. Theoretical understanding and technical practice of shale oil development in continental faulted basins in eastern China: A case study of Jiyang shale oil[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(5): 1-15. | |
| [40] | 孙焕泉, 杨勇, 王海涛, 等. 特高含水油藏剩余油分布特征与提高采收率新技术[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 90-102. |
| SUN Huanquan, YANG Yong, WANG Haitao, et al. Distribution characteristics of remaining oil in extra-high water cut reservoirs and new technologies for enhancing oil recovery[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 90-102. | |
| [41] | 周彪, 陈志明, 赵辉, 等. 基于改进DFM-NM的页岩油多井干扰三维数值模型及应用[J]. 石油科学通报, 2024, 9(6): 1005-1022. |
| ZHOU Biao, CHEN Zhiming, ZHAO Hui, et al. A three-dimensional numerical model and application of shale oil multi-well interference based on improved DFM-NM[J]. Petroleum Science Bulletin, 2024, 9(6): 1005-1022. | |
| [42] | 杜玉山, 蒋龙, 程紫燕, 等. 胜利济阳页岩油开发进展与攻关方向[J]. 油气地质与采收率, 2024, 31(5): 77-98. |
| DU Yushan, JIANG Long, CHENG Ziyan, et al. Progress and research direction of shale oil development in Jiyang Depression, Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(5): 77-98. | |
| [43] | WANG Enze, GUO Tonglou, LI Maowen, et al. Exploration potential of different lithofacies of deep marine shale gas systems: Insight into organic matter accumulation and pore formation mechanisms[J]. Journal of Natural Gas Science and Engineering, 2022, 102: 104563. |
| [44] | 郭旭升, 王濡岳, 申宝剑, 等. 中国页岩气地质特征、资源潜力与发展方向[J]. 石油勘探与开发, 2025, 52(1): 15-28. |
| GUO Xusheng, WANG Ruyue, SHEN Baojian, et al. Geological characteristics, resource potential, and development direction of shale gas in China[J]. Petroleum Exploration and Development, 2025, 52(1): 15-28. | |
| [45] | 谢建勇, 崔新疆, 李文波, 等. 准噶尔盆地吉木萨尔凹陷页岩油效益开发探索与实践[J]. 中国石油勘探, 2022, 27(1): 99-110. |
| XIE Jianyong, CUI Xinjiang, LI Wenbo, et al. Exploration and practice of benefit development of shale oil in Jimsar Sag, Junggar Basin[J]. China Petroleum Exploration, 2022, 27(1): 99-110. | |
| [46] | 支东明, 李建忠, 杨帆, 等. 准噶尔盆地吉木萨尔凹陷二叠系全油气系统地质特征与勘探开发实践[J]. 中国石油勘探, 2023, 28(4): 14-23. |
| ZHI Dongming, LI Jianzhong, YANG Fan, et al. Geological characteristics and exploration and development practice of the Permian full oil and gas system in Jimsar Sag, Junggar Basin[J]. China Petroleum Exploration, 2023, 28(4): 14-23. | |
| [47] | WANG Yuce, CAO Jian, TAO Keyu, et al. Origin of heavy shale oil in saline lacustrine basins: Insights from the Permian Lucaogou Formation, Junggar Basin[J]. AAPG Bulletin, 2023, 107(9): 1553-1579. |
| [48] | WU H, WANG Yaohua, TAN Jingqiang, et al. Influences of lithofacies on fluid mobility in mixed sedimentary rocks: Insights from NMR analysis of the Middle Permian Lucaogou Formation, Junggar Basin[J]. Energy Geoscience, 2024, 5(4): 100305. |
| [49] | 秦志军, 操应长, 冯程. 基于改进型随机森林算法的页岩岩性识别——以准噶尔盆地芦草沟组为例[J]. 新疆石油地质, 2024, 45(5): 595-603. |
| QIN Zhijun, CAO Yingchang, FENG Cheng. Shale lithology identification based on improved random forest algorithm: a case of Lucaogou Formation in Junggar Basin[J]. Xinjiang Petroleum Geology, 2024, 45(5): 595-603. |
| [1] | 郭旭升, 赵培荣, 张宇, 申宝剑, 李倩文, 李沛, 李雄, 钱恪然, 蔡生娟, 马晓潇, 李鹏. 中国陆相页岩油分类分级评价的现状、挑战与发展趋势[J]. 石油与天然气地质, 2025, 46(6): 1745-1761. |
| [2] | 孙中良, 李志明, 何文军, 冷筠滢, 祝庆敏, 刘得光, 王濡岳. 准噶尔盆地玛湖凹陷风城组页岩源-储协同演化机理[J]. 石油与天然气地质, 2025, 46(6): 2012-2025. |
| [3] | 白玉彬, 任海姣, 张军, 陈绍蓉, 吴伟涛, 赵辛楣, 吴和源, 邹阳. 页岩油组分特征及可动性评价——以准噶尔盆地玛湖凹陷二叠系风城组为例[J]. 石油与天然气地质, 2025, 46(5): 1582-1596. |
| [4] | 徐泽阳, 李军, 吴涛, 党佳城, 赵子龙. 准噶尔盆地腹部差异剥蚀区侏罗系低饱和致密油藏压力分布预测及成因分析[J]. 石油与天然气地质, 2025, 46(5): 1614-1629. |
| [5] | 李军, 袁成灼, 尚晓庆, 吴涛, 吾尔妮萨罕·麦麦提敏, 许晨航, 徐泽阳, 徐会永. 成岩流体系统演化阶段与深层超压致密储层成因——以准噶尔盆地腹部地区为例[J]. 石油与天然气地质, 2025, 46(5): 1597-1613. |
| [6] | 康逊, 谭静强, 胡文瑄, 靳军, 胡瑞璞, 曹剑. 准噶尔盆地玛湖凹陷全油气系统成储机制差异性[J]. 石油与天然气地质, 2025, 46(4): 1250-1266. |
| [7] | 鲍李银, 庞雄奇, 邹亮, 陈宏飞, 林昊, 张婷, 沈彬, 王凯, 王睿. 全油气系统油气成藏动力判别与贡献量评价——以准噶尔盆地玛湖凹陷二叠系风城组为例[J]. 石油与天然气地质, 2025, 46(4): 1267-1280. |
| [8] | 胡耀, 贾承造, 庞雄奇, 宋永, 何文军, 陈宏飞, 鲍李银, 陈玮岩, 赵文, 肖惠译, 李才俊, 徐帜. 远源型致密油气藏运聚动力与成藏模式——以准噶尔盆地玛湖凹陷三叠系百口泉组砂砾岩油藏为例[J]. 石油与天然气地质, 2025, 46(4): 1281-1298. |
| [9] | 杨柳, 公飞, 姜晓宇, 刘朝阳, 董广涛, 蔡嘉伟. CO2-盐水-砂砾岩作用机理与矿物成分、流体赋存及孔隙变化特征[J]. 石油与天然气地质, 2025, 46(3): 967-982. |
| [10] | 潘永帅, 柳波, 杨易卓, 屈童, 黄志龙, 徐雄飞. 火山灰蚀变对细粒混积岩元素异常的影响及对古环境恢复的作用[J]. 石油与天然气地质, 2025, 46(2): 530-549. |
| [11] | 周德华, 杨勇, 王运海, 孙川翔, 郑永旺, 钟安海, 鲁明晶, 张珂. 超临界二氧化碳混合压裂技术机理及应用——以渤海湾盆地济阳坳陷页岩油为例[J]. 石油与天然气地质, 2025, 46(2): 575-585. |
| [12] | 杨柳, 姜晓宇, 董广涛, 公飞, 朱凯, 裴奕杰, 蔡嘉伟. 前置CO2压裂后砂砾岩CO2驱油的三维孔隙尺度模拟[J]. 石油与天然气地质, 2025, 46(2): 670-684. |
| [13] | 鲍李银, 庞雄奇, 崔新璇, 陈宏飞, 高军, 邹亮, 赵振丞, 王琛茜, 王雷, 李闻东, 刘利. 准噶尔盆地金龙油田二叠系佳木河组火山岩岩相组合及产能差异[J]. 石油与天然气地质, 2025, 46(1): 136-150. |
| [14] | 王继远, 王斌, 胡宗全, 商丰凯, 刘德志, 李振明, 邱岐, 宋振响, 胡志啟. 深层-超深层碎屑岩优质储层成因机理[J]. 石油与天然气地质, 2025, 46(1): 151-166. |
| [15] | 宋璠, 孔庆圆, 张学才, 曹海防, 焦国华, 杨悦. 干旱型浅水三角洲沉积特征及沉积模式[J]. 石油与天然气地质, 2024, 45(5): 1275-1288. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||