石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (1): 15-30.doi: 10.11743/ogg20240102
田纳新1(), 龚承林2, 吴高奎1, 齐昆2, 朱一杰2, 刘静静1
收稿日期:
2023-10-05
修回日期:
2023-11-14
出版日期:
2024-02-01
发布日期:
2024-02-29
第一作者简介:
田纳新(1968—),男,博士、高级工程师,石油地质学。E-mail:tiannx.syky@sinopec.com。
基金项目:
Naxin TIAN1(), Chenglin GONG2, Gaokui WU1, Kun QI2, Yijie ZHU2, Jingjing LIU1
Received:
2023-10-05
Revised:
2023-11-14
Online:
2024-02-01
Published:
2024-02-29
摘要:
海底地貌对重力流沉积具有重要控制作用并同时受到重力流沉积过程影响。针对重力流与海底地貌动态相互作用下深水沉积体系发育演化研究不足的问题,以大西洋赤道段菩提瓜尔盆地的局部沉积记录为解剖对象,基于三维地震资料,采用RGB三色融合技术,阐明了深水沉积体系发育演化特征,揭示了重力流与海底地貌的动态相互作用。研究区初始地貌中的主要地貌低点和次要地貌低点控制了早期深水水道和朵叶体的发育:①随着主要地貌低点斜坡坡度向远物源一端明显变缓,重力流的速度和能量逐渐减小,向下侵蚀能力变弱、侧向拓宽能力增强,水道剖面形态沿流向依次呈现V型、深U型及碟型;②因为水道限制性逐渐减弱,末端非限制性区域发育朵叶体沉积,朵页体上覆于水道充填沉积且向近物源一端生长,最终溢出到研究区西北角的次要地貌低点。水道和朵叶体沉积致使主要地貌低点远物源一端的斜坡坡度进一步变缓,后期块体流被捕获时,其沿流向携带沉积物的能力更容易降低,导致块体搬运沉积复合体(MTCs)在主要地貌低点远物源一端广泛堆积。
中图分类号:
1 | POSAMENTIER H W, KOLLA V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings[J]. Journal of Sedimentary Research, 2003, 73(3): 367-388. |
2 | MAYALL M, JONES E, CASEY M. Turbidite channel reservoirs—Key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23(8): 821-841. |
3 | 秦雁群, 万仑坤, 计智锋, 等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质, 2018, 39(1): 140-152. |
QIN Yanqun, WAN Lunkun, JI Zhifeng, et al. Progress of research on deep-water mass-transport deposits[J]. Oil & Gas Geology, 2018, 39(1): 140-152. | |
4 | 林畅松. 盆地沉积动力学: 研究现状与未来发展趋势[J]. 石油与天然气地质, 2019, 40(4): 685-700. |
LIN Changsong. Sedimentary dynamics of basin: Status and trend[J]. Oil & Gas Geology, 2019, 40(4): 685-700. | |
5 | WEIMER P, SLATT R M, BOUROULLEC R, et al. Introduction to the petroleum geology of deepwater setting[M]. Tulsa: American Association of Petroleum Geologists, 2006: 57-111. |
6 | MCHARGUE T, PYRCZ M J, SULLIVAN M D, et al. Architecture of turbidite channel systems on the continental slope: Patterns and predictions[J]. Marine and Petroleum Geology, 2011, 28(3): 728-743. |
7 | COVAULT J A, KOSTIC S, PAULL C K, et al. Cyclic steps and related supercritical bedforms: Building blocks of deep-water depositional systems, western North America[J]. Marine Geology, 2017, 393: 4-20. |
8 | STOW D A V, READING H G, COLLINSON J D. Deep seas[M]//READING H G. Sedimentary Environments: Processes, Facies, and Stratigraphy. 3rd ed. Cambridge: Blackwell Science, 1996: 395-453. |
9 | RICHARDS M, BOWMAN M, READING H. Submarine-fan systems i: Characterization and stratigraphic prediction[J]. Marine and Petroleum Geology, 1998, 15(7): 689-717. |
10 | KOLLA V. A review of sinuous channel avulsion patterns in some major deep-sea fans and factors controlling them[J]. Marine and Petroleum Geology, 2007, 24(6/9): 450-469. |
11 | PICOT M, DROZ L, MARSSET T, et al. Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo Fan)[J]. Marine and Petroleum Geology, 2016, 72: 423-446. |
12 | ZHAO Xiaoming, QI Kun, LIU Li, et al. Development of a partially-avulsed submarine channel on the Niger Delta continental slope: Architecture and controlling factors[J]. Marine and Petroleum Geology, 2018, 95: 30-49. |
13 | HUYGHE P, FOATA M, DEVILLE E, et al. Channel profiles through the active thrust front of the southern Barbados prism[J]. Geology, 2004, 32(5): 429-432. |
14 | FERRY J N, MULDER T, PARIZE O, et al. Concept of equilibrium profile in deep-water turbidite system: effects of local physiographic changes on the nature of sedimentary process and the geometries of deposits[J]. Geological Society, London, Special Publications, 2005, 244(1): 181-193. |
15 | GEE M J R, GAWTHORPE R L. Submarine channels controlled by salt tectonics: Examples from 3D seismic data offshore Angola[J]. Marine and Petroleum Geology, 2006, 23(4): 443-458. |
16 | CLARK I R, CARTWRIGHT J A. Interactions between submarine channel systems and deformation in deepwater fold belts: Examples from the Levant Basin, Eastern Mediterranean sea[J]. Marine and Petroleum Geology, 2009, 26(8): 1465-1482. |
17 | JOLLY B A, LONERGAN L, WHITTAKER A C. Growth history of fault-related folds and interaction with seabed channels in the toe-thrust region of the deep-water Niger Delta[J]. Marine and Petroleum Geology, 2016, 70: 58-76. |
18 | ZUCKER E, GVIRTZMAN Z, STEINBERG J, et al. Diversion and morphology of submarine channels in response to regional slopes and localized salt tectonics, Levant Basin[J]. Marine and Petroleum Geology, 2017, 81: 98-111. |
19 | SMITH R. Silled sub-basins to connected tortuous corridors: sediment distribution systems on topographically complex sub-aqueous slopes[J]. Geological Society, London, Special Publications, 2004, 222(1): 23-43. |
20 | BEAUBOUEF R T, ABREU V. Basin 4 of the Brazos-Trinity slope system: Anatomy of the terminal portion of an intra-slope lowstand systems tract[J]. Gulf Coast Association of Geological Societies Transactions, 2006, 56: 39-49. |
21 | ZHAO Xiaoming, LI Minghua, QI Kun, et al. Development of a distinct submarine depositional system on a topographically complex Niger Delta slope[J]. Geological Journal, 2020, 55(5): 3732-3747. |
22 | MOSCARDELLI L, WOOD L, MANN P. Mass-transport complexes and associated processes in the offshore area of Trinidad and Venezuela[J]. AAPG Bulletin, 2006, 90(7): 1059-1088. |
23 | BULL S, CARTWRIGHT J, HUUSE M. A review of kinematic indicators from mass-transport complexes using 3D seismic data[J]. Marine and Petroleum Geology, 2009, 26(7): 1132-1151. |
24 | ALVES T M. Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review[J]. Marine and Petroleum Geology, 2015, 67: 262-285. |
25 | KNELLER B. The influence of flow parameters on turbidite slope channel architecture[J]. Marine and Petroleum Geology, 2003, 20(6/8): 901-910. |
26 | FRANCE-LANORD C, SPIESS V, KLAUS A, et al. Neogene and Late Paleogene record of Himalayan orogeny and climate: A transect across the Middle Bengal Fan: International Ocean Discovery Program expedition 354 preliminary report[R]. College Station: IODP, 2015. |
27 | GONG Chenglin, WANG Haiqiang, SHAO Dali, et al. How did the world’s largest submarine fan in the Bay of Bengal grow and evolve at the subfan scale?[J]. AAPG Bulletin, 2022, 106(7): 1431-1451. |
28 | DARROS DE MATOS R M. Tectonic evolution of the equatorial South Atlantic[M]//MOHRIAK W, TAIWANI M. Atlantic Rifts and Continental Margins. Washington, D.C.: American Geophysical Union, 2000: 331-354. |
29 | BROWNFIELD M E, CHARPENTIER R R. Geology and total petroleum systems of the Gulf of Guinea province of West Africa: b2207C[R]. Reston: U.S. Geological Survey, 2006: 32. |
30 | STOLTE J T, DARDEN M P. Testing the Atlantic Mirror theory[J]. Oil & Gas Financial Journal, 2013, 10(4): 18-20, 22-23. |
31 | MAIA DE ALMEIDA N, ALVES T M, NEPOMUCENO FILHO F, et al. Tectono-sedimentary evolution and petroleum systems of the Mundaú subbasin: A new deep-water exploration frontier in equatorial Brazil[J]. AAPG Bulletin, 2020, 104(4): 795-824. |
32 | CRUZ PESSOA NETO O DA, SOARES U M, SILVA J G F DA, et al. Bacia Potiguar[J]. Boletim de Geociencias-Petrobras, Rio de Janeiro, 2007, 15(2): 357-369. |
33 | MELO A H, ANDRADE P R O, MAGALHÃES A J C, et al. Stratigraphic evolution from the early Albian to late Campanian of the Potiguar Basin, Northeast Brazil: An approach in seismic scale[J]. Basin Research, 2020, 32(5): 1054-1080. |
34 | SILVA E B DA, SEVERIANO RIBEIRO H J P, SOARES DE SOUZA E. Exploration plays of the Potiguar Basin in deep and ultra-deep water, Brazilian Equatorial Margin[J]. Journal of South American Earth Sciences, 2021, 111: 103454. |
35 | DE OLIVEIRA CUNHA J A, CÓRDOBA V C, SOARES U M, et al. Evolution of shallow and deep-water deposits included in the regressive drift succession of the Potiguar Basin (Brazilian Equatorial Margin) during the Late Cretaceous to Holocene[J]. Journal of South American Earth Sciences, 2021, 110: 103420. |
36 | FONSECA J C L G, VITAL H, PEREZ Y A R, et al. Seismic stratigraphy of a deep water basin in the Brazilian equatorial margin: The eastern portion of Potiguar Basin and Touros High[J]. Geo-Marine Letters, 2020, 40(6): 977-988. |
37 | DEPTUCK M E, SYLVESTER Z, PIRMEZ C, et al. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope[J]. Marine and Petroleum Geology, 2007, 24(6/9): 406-433. |
38 | HANSEN L, L’HEUREUX J S, SAUVIN G, et al. Effects of mass-wasting on the stratigraphic architecture of a fjord-valley fill: Correlation of onshore, shear-wave seismic and marine seismic data at Trondheim, Norway[J]. Sedimentary Geology, 2013, 289: 1-18. |
39 | SALLER A, WERNER K, SUGIAMAN F, et al. Characteristics of Pleistocene deep-water fan lobes and their application to an upper Miocene reservoir model, offshore East Kalimantan, Indonesia[J]. AAPG Bulletin, 2008, 92(7): 919-949. |
40 | CROSS N E, CUNNINGHAM A, COOK R J, et al. Three-dimensional seismic geomorphology of a deep-water slope-channel system: The Sequoia field, offshore west Nile Delta, Egypt[J]. AAPG Bulletin, 2009, 93(8): 1063-1086. |
41 | FILDANI A, HUBBARD S M, COVAULT J A, et al. Erosion at inception of deep-sea channels[J]. Marine and Petroleum Geology, 2013, 41: 48-61. |
42 | MAIER K L, FILDANI A, PAULL C K, et al. Deep-sea channel evolution and stratigraphic architecture from inception to abandonment from high-resolution Autonomous Underwater Vehicle surveys offshore central California[J]. Sedimentology, 2013, 60(4): 935-960. |
43 | KOSTIC S. Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture[J]. Geosphere, 2011, 7(2): 294-304. |
44 | SPINEWINE B, SEQUEIROS O E, GARCIA M H, et al. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms[J]. Journal of Sedimentary Research, 2009, 79(8): 608-628. |
45 | GAY A. Reply to comment on: Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin[J]. Marine Geology, 2006, 232(1/2): 103-104. |
46 | POSAMENTIER H W, KOLLA V, 刘化清. 深水浊流沉积综述[J]. 沉积学报, 2019, 37(5): 879-903. |
POSAMENTIER H W, KOLLA V, LIU Huaqing. An overview of deep-water turbidite deposition[J]. Acta Sedimentologica Sinica, 2019, 37(5): 879-903. | |
47 | SHANMUGAM G. Submarine fans: A critical retrospective (1950-2015)[J]. Journal of Palaeogeography, 2016, 5(2): 110-184. |
48 | ORTIZ-KARPF A, HODGSON D M, JACKSON C A L, et al. Influence of seabed morphology and substrate composition on mass-transport flow processes and pathways: Insights from the Magdalena Fan, offshore Colombia[J]. Journal of Sedimentary Research, 2017, 87(3): 189-209. |
49 | QIN Yongpeng, ALVES T M, CONSTANTINE J, et al. The role of mass wasting in the progressive development of submarine channels (Espírito Santo Basin, SE Brazil)[J]. Journal of Sedimentary Research, 2017, 87(5): 500-516. |
50 | GAMBOA D, ALVES T M. Bi-modal deformation styles in confined mass-transport deposits: Examples from a salt minibasin in SE Brazil[J]. Marine Geology, 2016, 379: 176-193. |
51 | WU Gaokui, KONG Fanjun, TIAN Naxin, et al. Structural characteristics and deep-water hydrocarbon accumulation model of the Scotian Basin, Eastern Canada[J]. Energy Geoscience, 2023, 4(3): 100152. |
52 | 田纳新, 龚承林, 吴高奎, 等. 转换陆缘海底扇的沉积特征与沉积模式——以赤道大西洋漂移晚期陆缘为例[J]. 沉积学报, 2023, 41(6): 1798-1809. |
TIAN Naxin, GONG Chenglin, WU Gaokui, et al. Depositional characteristics and models of submarine fans on transform margins: A case study from the late drift stage of the equatorial Atlantic margin[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1798-1809. | |
53 | 吴高奎, 张忠民, 陈华, 等. 下刚果盆地中新统重力流沉积演化及控制因素[J]. 沉积学报, 2023, 41(1): 73-84. |
WU Gaokui, ZHANG Zhongmin, CHEN Hua, et al. Sedimentary evolution and controlling factors of Miocene gravity flow deposits in the Lower Congo Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 73-84. | |
54 | WU Wei, LI Quan, YU Jing, et al. The central canyon depositional patterns and filling process in east of Lingshui Depression, Qiongdongnan Basin, northern South China Sea[J]. Geological Journal, 2018, 53(6): 3064-3081. |
[1] | 刘昇, 范存辉, 张本健, 张亚, 王尉, 罗冰, 白晓亮. 四川盆地东部中二叠统茅口组孤峰段展布特征及其油气地质意义[J]. 石油与天然气地质, 2023, 44(4): 993-1008. |
[2] | 李华, 杨朝强, 周伟, 何幼斌, 王玉, 彭旋, 李亚茹, 吕欣博. 莺歌海盆地东方1-1气田中新统黄流组浅海多级海底扇形成机理及储层分布[J]. 石油与天然气地质, 2023, 44(2): 429-440. |
[3] | 胡德胜, 宫立园, 满晓, 戴伊宁, 柳智萱. 北部湾盆地涠西南凹陷雁列断层变换带发育特征及其控储作用[J]. 石油与天然气地质, 2022, 43(6): 1359-1369. |
[4] | 李庆, 卢浩, 吴胜和, 夏东领, 李江山, 齐奉强, 付育璞, 伍岳. 鄂尔多斯盆地南部三叠系长73亚段凝灰岩沉积成因及储层特征[J]. 石油与天然气地质, 2022, 43(5): 1141-1154. |
[5] | 蒋恕, 王浩, 郭涛, 张如才, 杜晓峰, 张钰莹, 刘恩豪, 王华. 渤海湾盆地辽东湾坳陷盆中隆起缓坡带重力流沉积形态及其控制因素[J]. 石油与天然气地质, 2022, 43(4): 823-832. |
[6] | 李华, 何幼斌, 谈梦婷, 冯斌, 葛稳稳, 孙玉玺, 于星. 深水重力流水道-朵叶体系形成演化及储层分布[J]. 石油与天然气地质, 2022, 43(4): 917-928. |
[7] | 孙辉, 范国章, 邵大力, 左国平, 刘少治, 王红平, 马宏霞, 许小勇, 鲁银涛, 闫春. 深水局部限制型水道复合体沉积特征及其对储层性质的影响——以东非鲁武马盆地始新统为例[J]. 石油与天然气地质, 2021, 42(6): 1440-1450. |
[8] | 周新平, 何青, 刘江艳, 李士祥, 杨田. 鄂尔多斯盆地三叠系延长组7段深水碎屑流沉积特征及成因[J]. 石油与天然气地质, 2021, 42(5): 1063-1077. |
[9] | 陈朝兵, 赵振宇, 付玲, 高建荣, 宋微, 陈新晶. 鄂尔多斯盆地华庆地区延长组6段深水致密砂岩填隙物特征及对储层发育的影响[J]. 石油与天然气地质, 2021, 42(5): 1098-1111. |
[10] | 李全, 吴伟, 康洪全, 任世君, 逄林安, 杨婷, 蔡露露, 刘小龙. 西非下刚果盆地深水水道沉积特征及控制因素[J]. 石油与天然气地质, 2019, 40(4): 917-929. |
[11] | 孙辉, 刘少治, 吕福亮, 范国章, 马宏霞. 东非鲁武马盆地渐新统深水沉积层序地层格架组成和时空分布[J]. 石油与天然气地质, 2019, 40(1): 170-181. |
[12] | 秦雁群, 万仑坤, 计智锋, 李富恒, 徐海龙, 巴丹. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质, 2018, 39(1): 140-152. |
[13] | 王琳霖, 王振奇, 肖鹏. 下刚果盆地A区块中新统深水沉积体系特征[J]. 石油与天然气地质, 2015, 36(6): 963-974. |
[14] | 马宏霞, 孙辉, 邵大力, 刘艳红, 丁梁波, 邹辰, 余鑫培. 缅甸若开盆地上中新统-上新统深水沉积层序地层划分及控制因素[J]. 石油与天然气地质, 2015, 36(1): 136-141. |
[15] | 宋璠, 苏妮娜, 侯加根, 杨少春, 朱春艳, 张瑞香. 黄骅坳陷板桥油田板桥油层沉积特征及演化[J]. 石油与天然气地质, 2012, 33(6): 914-922,943. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||