石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (3): 752-769.doi: 10.11743/ogg20240313
方锐1,2(), 蒋裕强1,2, 杨长城3, 邓海波4, 蒋婵5, 洪海涛6, 唐松7, 谷一凡1,2(), 朱讯3, 孙莎莎8, 蔡光银1
收稿日期:
2023-12-29
修回日期:
2024-05-07
出版日期:
2024-07-01
发布日期:
2024-07-01
通讯作者:
谷一凡
E-mail:19980456728@163.com;xnsygyf@126.com
第一作者简介:
方锐(1995—),男,博士研究生,非常规油气储层地质学。E-mail:19980456728@163.com。
基金项目:
Rui FANG1,2(), Yuqiang JIANG1,2, Changcheng YANG3, Haibo DENG4, Chan JIANG5, Haitao HONG6, Song TANG7, Yifan GU1,2(), Xun ZHU3, Shasha SUN8, Guangyin CAI1
Received:
2023-12-29
Revised:
2024-05-07
Online:
2024-07-01
Published:
2024-07-01
Contact:
Yifan GU
E-mail:19980456728@163.com;xnsygyf@126.com
摘要:
通过系统分析钻井取心资料,将四川盆地侏罗系凉高山组页岩细分为纯页岩型组合、介壳型页岩组合和粉砂型页岩组合等3类5种岩性组合,在此基础上,总结不同岩性组合页岩储层宏观、微观特征差异,识别并评价不同岩性组合页岩油储层流体赋存状态特征及可动性,优选有利岩性组合类型。研究表明:①凉高山组页岩油分为游离油和吸附油,游离油具有易流动油和束缚油2种赋存状态,页岩孔隙中,小孔主要赋存吸附油和束缚油,中孔主要赋存束缚油和易流动油,大孔主要为易流动油;二维核磁共振T2≥0.2 ms,1≤T1/T2<10的区域为易流动油以及束缚油信号,T2<0.2 ms,10≤T1/T2<100的区域则为吸附油信号,并建立了凉高山组不同赋存状态流体二维核磁共振T1-T2识别图版;核磁共振孔径转换揭示了凉高山组页岩油游离油孔径下限为60 nm,建立了基于孔径大小和流体赋存状态的页岩油储层孔隙划分方案。②有机质含量、流体流动能力、矿物组成及孔隙结构是凉高山组页岩油赋存及可动性的直接影响因素。③粉砂型页岩组合大孔及微裂缝发育,易流动孔隙占比高,可动油更容易富集;粉砂纹层构造发育不仅能够提供丰富的储集空间,也会提高孔隙连通性,有利于页岩油聚集、赋存及流动,指示了粉砂型页岩组合为凉高山组有利岩性组合类型,其发育层段即为四川盆地凉高山组页岩油勘探开发有利层段。明确粉砂型页岩组合孔-缝配置关系是未来凉高山组页岩油勘探开发取得突破的主要攻关研究方向。
中图分类号:
图2
四川盆地侏罗系凉高山组露头及岩心典型特征a. 上部深灰色页岩、灰黑色页岩夹粉砂质条带,下部见30 cm厚浅灰色粉砂岩,XQ1井,埋深2 467.40 ~ 2 468.98 m,凉二段,岩心照片;b. 深灰色页岩、灰黑色页岩夹粉砂质条带,图a局部放大,XQ1井,埋深2 467.40 ~ 2 467.74 m,凉二段,岩心照片;c. 灰黑色泥岩与深灰色粉砂岩互层,发育波状层理,YT1井,埋深2 167.07 ~ 2 167.46 m,凉二段,岩心照片;d. 上部灰黑色泥页岩与深灰色粉砂岩不等厚互层,下部深灰色粉砂岩夹泥质条带,LQ103井,埋深3 263.42 ~ 3 263.82 m,凉二段,岩心照片;e. 灰黑色页岩夹多条介壳纹层,YT1井,埋深2 427.66 m,凉二段,岩心照片;f. 深灰色粉砂岩夹泥质纹层,发育波状砂纹层理,DC5井,埋深1 625.64 m,凉三段,岩心照片;g. 灰黑色泥岩夹深灰色粉砂岩条带,发育波状层理,G17井,埋深2 482.40 m,凉三段,岩心照片;h. 灰黑色页岩夹砂纹层,见砂岩透镜体,见生物扰动,G104井,埋深2 562.85 m,凉二段,岩心照片;i. 灰黑色泥页岩与粉砂质条带互层,顶、底同时见两条介壳层,G110井,埋深2 431.72 m,凉二段,岩心照片;j. 黑色页岩,页理发育,重庆万州弹子镇剖面,凉二段,野外照片;k. 黑色泥页岩与深灰色粉砂岩不等厚互层,页岩表面风化严重,四川达州金窝剖面,凉一段,野外照片;l. 深灰色泥页岩、黑色泥页岩与深灰色粉砂岩不等厚互层,底部见一厚30 cm粉砂岩砂体,四川达州七里峡剖面,凉三段,野外照片,m. 底部为灰绿色粉砂岩,中部为灰黑色泥岩夹多条不等厚介壳层,上部为浅灰色泥岩,四川达州賨人谷剖面,凉一段,野外照片;n. 灰黑色泥岩,局部泥岩风化严重,四川达州敖家营剖面,凉二段,野外照片"
图4
四川盆地凉高山组不同岩性组合页岩样品孔隙类型显微照片及分布占比饼状图a. 纯页岩型组合(A型),蜂窝状有机孔,HQ1井,埋深1 764.70 m,SEM;b. 含粉砂含介壳页岩组合(B2型),蜂窝状有机孔,XQ1井,埋深2 452.29 m,SEM;c. 含粉砂纹层页岩组合(C1型),蜂窝状有机孔,YT1井,埋深2 162.00 m,SEM;d. 纯页岩型组合(A型),黏土矿物晶间孔,YT1井,埋深2 161.25 m,SEM;e. 含粉砂含介壳页岩组合(B2型),粒内溶孔,XQ1井,埋深2 452.29 m,SEM;f. 纯页岩型组合(A型),黄铁矿晶间孔,HQ1井,埋深1 751.71 m,SEM;g. 纯页岩型组合(A型),晶间孔缝,HQ1井,埋深1 896.18 m,SEM;h. 含粉砂纹层页岩组合(C1型),粒内溶孔,XQ1井,埋深2 454.89 m,SEM;i. 含粉砂纹层页岩组合(C1型),粒内溶孔,YT1井,埋深2 162.00 m,SEM;j. 纯页岩型组合(A型),微裂缝,XQ1井,埋深2 443.00 m,SEM;k. 含介壳纹层页岩组合(B1型),有机质边缘缝,XQ1井,埋深2 447.62 m,SEM;l. 粉砂岩与泥页岩薄互层组合(C2型),黏土矿物层间缝,YT1井,埋深2 162.63 m,SEM;m. 纯页岩型组合(A型)孔隙类型占比;n. 介壳型页岩组合(B型)孔隙类型占比;o. 粉砂型页岩组合(C型)孔隙类型占比"
表2
四川盆地凉高山组不同岩性组合样品在不同赋存状态下的流体含量及占比"
样品编号 | 井名 | 埋深/m | 组合类型 | 拟合结果 | 易流动油含量/(mg/g) | 易流动油 占比/% | 束缚油 占比/% | 游离油 占比/% |
---|---|---|---|---|---|---|---|---|
1 | YT1 | 2 152.13 | C2 | Qm=0.891Δp/(Δp+0.983 7) | 0.89 | 19.21 | 39.24 | 58.45 |
2 | XQ1 | 2 452.29 | B2 | Qm=0.671Δp/(Δp+0.014 9) | 0.67 | 13.85 | 34.36 | 48.21 |
3 | XQ1 | 2 455.06 | A | Qm=1.908Δp/(Δp+0.005 7) | 1.91 | 43.92 | 13.10 | 57.02 |
4 | XQ1 | 2 465.48 | C1 | Qm=0.022Δp/(Δp+0.014 8) | 0.02 | 16.13 | 24.19 | 40.32 |
5 | HQ1 | 1 750.73 | C1 | Qm=0.714Δp/(Δp+0.067 4) | 0.71 | 17.44 | 41.28 | 58.72 |
6 | HQ1 | 1 751.71 | A | Qm=1.223Δp/(Δp+0.009 1) | 1.22 | 24.34 | 28.31 | 52.65 |
7 | HQ1 | 1 764.70 | A | Qm=1.309Δp/(Δp+0.012 4) | 1.31 | 19.85 | 45.53 | 65.38 |
8 | HQ1 | 1 894.02 | B1 | Qm=0.835Δp/(Δp+0.050 4) | 0.84 | 11.78 | 30.80 | 42.58 |
9 | HQ1 | 1 896.18 | A | Qm=0.159Δp/(Δp+0.024 1) | 0.16 | 7.33 | 47.53 | 54.86 |
10 | HQ1 | 1 928.58 | C1 | Qm=1.031Δp/(Δp+0.017 1) | 1.03 | 26.35 | 43.24 | 69.59 |
图10
不同岩性组合页岩样品在不同状态下的T1-T2谱图版a. 饱和油样,纯页岩型组合(A型);b. 离心速率16 000 r/min样,纯页岩型组合(A型);c. 140 ℃干燥样,纯页岩型组合(A型);d. 240 ℃干燥样,纯页岩型组合(A型);e. 饱和油样,含粉砂纹层页岩组合(C1型);f. 离心速率16 000 r/min样,含粉砂纹层页岩组合(C1型);g. 140 ℃干燥样,含粉砂纹层页岩组合(C1型);h. 240 ℃干燥样,含粉砂纹层页岩组合(C1型);i. 饱和油样,粉砂岩与泥页岩薄互层组合(C2型);j. 离心速率16 000 r/min样,粉砂岩与泥页岩薄互层组合(C2型);k. 140 ℃干燥样,粉砂岩与泥页岩薄互层组合(C2型);l. 240 ℃干燥样,粉砂岩与泥页岩薄互层组合(C2型)"
1 | Administration U S E I.Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States[J]. 2013. |
2 | 周庆凡, 金之钧, 杨国丰, 等. 美国页岩油勘探开发现状与前景展望[J]. 石油与天然气地质, 2019, 40(3): 469-477. |
ZHOU Qingfan, JIN Zhijun, YANG Guofeng, et al. Shale oil exploration and production in the U.S.: Status and outlook[J]. Oil & Gas Geology, 2019, 40(3): 469-477. | |
3 | 李志明, 芮晓庆, 黎茂稳, 等. 北美典型混合页岩油系统特征及其启示[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1060-1072. |
LI Zhiming, RUI Xiaoqing, LI Maowen, et al. Characteristics of typical hybrid shale-oil system in North America and its implications[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1060-1072. | |
4 | LARUE D K, SMITHARD M, MERCER M, et al. Three deep resource plays in the San Joaquin Valley compared with the Bakken Formation[J]. AAPG Bulletin, 2018, 102(2): 195-243. |
5 | 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. |
ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. | |
6 | 马永生, 蔡勋育, 赵培荣, 等. 中国陆相页岩油地质特征与勘探实践[J]. 地质学报, 2022, 96(1): 155-171. |
MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al. Geological characteristics and exploration practices of continental shale oil in China[J]. Acta Geologica Sinica, 2022, 96(1): 155-171. | |
7 | 邹才能, 马锋, 潘松圻, 等. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展[J]. 地学前缘, 2023, 30(1): 128-142. |
ZOU Caineng, MA Feng, PAN Songqi, et al. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China[J]. Earth Science Frontiers, 2023, 30(1): 128-142. | |
8 | 李阳, 赵清民, 吕琦, 等. 中国陆相页岩油开发评价技术与实践[J]. 石油勘探与开发, 2022, 49(5): 955-964. |
LI Yang, ZHAO Qingmin, Qi LYU, et al. Evaluation technology and practice of continental shale oil development in China[J]. Petroleum Exploration and Development, 2022, 49(5): 955-964. | |
9 | 郭秋麟, 米石云, 张倩, 等. 中国页岩油资源评价方法与资源潜力探讨[J]. 石油实验地质, 2023, 45(3): 402-412. |
GUO Qiulin, MI Shiyun, ZHANG Qian, et al. Assessment methods and potential of shale oil resources in China[J]. Petroleum Geology and Experiment, 2023, 45(3): 402-412. | |
10 | 蒋恕, 唐相路, OSBORNE S, 等. 页岩油气富集的主控因素及误辩: 以美国、阿根廷和中国典型页岩为例[J]. 地球科学, 2017, 42(7): 1083-1091. |
JIANG Shu, TANG Xianglu, OSBORNE S, et al. Enrichment factors and current misunderstanding of shale oil and gas: Case study of shales in U.S., Argentina and China[J]. Earth Science, 2017, 42(7): 1083-1091. | |
11 | JIANG Shuxian, MOKHTARI M. Characterization of marl and interbedded limestone layers in the Eagle Ford Formation, DeWitt county, Texas[J]. Journal of Petroleum Science and Engineering, 2019, 172: 502-510. |
12 | DONOHUE C M, BARRIE C D. A review of the Bakken petroleum systems in the United States and Canada: Recognizing the importance of the Middle Member play[J]. AAPG Bulletin, 2021, 105(9): 1847-1866. |
13 | 付金华, 王龙, 陈修, 等. 鄂尔多斯盆地长7页岩油勘探开发新进展及前景展望[J]. 中国石油勘探, 2023, 28(5): 1-14. |
FU Jinhua, WANG Long, CHEN Xiu, et al. Progress and prospects of shale oil exploration and development in the seventh member of Yanchang Formation in Ordos Basin[J]. China Petroleum Exploration, 2023, 28(5): 1-14. | |
14 | 王林生, 叶义平, 覃建华, 等. 陆相页岩油储层微观孔喉结构表征与含油性分级评价——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油与天然气地质, 2022, 43(1): 149-160. |
WANG Linsheng, YE Yiping, QIN Jianhua, et al. Microscopic pore structure characterization and oil-bearing property evaluation of lacustrine shale reservoir: A case study of the Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Oil & Gas Geology, 2022, 43(1): 149-160. | |
15 | 何文渊, 何海清, 王玉华, 等. 川东北地区平安1井侏罗系凉高山组页岩油重大突破及意义[J]. 中国石油勘探, 2022, 27(1): 40-49. |
HE Wenyuan, HE Haiqing, WANG Yuhua, et al. Major breakthrough and significance of shale oil of the Jurassic Lianggaoshan Formation in Well Ping’an 1 in northeastern Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1): 40-49. | |
16 | 梁世君, 黄志龙, 柳波, 等. 马朗凹陷芦草沟组页岩油形成机理与富集条件[J]. 石油学报, 2012, 33(4): 588-594. |
LIANG Shijun, HUANG Zhilong, LIU Bo, et al. Formation mechanism and enrichment conditions of Lucaogou Formation shale oil from Malang Sag, Santanghu Basin[J]. Acta Petrolei Sinica, 2012, 33(4): 588-594. | |
17 | HAN Yuanjia, MAHLSTEDT N, HORSFIELD B. The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion[J]. AAPG Bulletin, 2015, 99(12): 2173-2201. |
18 | 王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4): 789-802. |
WANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802. | |
19 | 钱门辉, 蒋启贵, 黎茂稳, 等. 湖相页岩不同赋存状态的可溶有机质定量表征[J]. 石油实验地质, 2017, 39(2): 278-286. |
QIAN Menhui, JIANG Qigui, LI Maowen, et al. Quantitative characterization of extractable organic matter in lacustrine shale with different occurrences[J]. Petroleum Geology and Experiment, 2017, 39(2): 278-286. | |
20 | LI Junqian, LU Shuangfang, XIE Liujuan, et al. Modeling of hydrocarbon adsorption on continental oil shale: A case study on n-alkane[J]. Fuel, 2017, 206: 603-613. |
21 | 皇甫玉慧, 张金友, 张水昌, 等. 松辽盆地北部白垩系青山口组不同赋存状态页岩油特征[J]. 地质学报, 2023, 97(2): 523-538. |
HUANGFU Yuhui, ZHANG Jinyou, ZHANG Shuichang, et al. Characteristics of shale oil in different occurrence states of the Cretaceous Qingshankou Formation in the northern Songliao Basin[J]. Acta Geologica Sinica, 2023, 97(2): 523-538. | |
22 | 李志明, 刘雅慧, 何晋译, 等. 陆相页岩油 “甜点” 段评价关键参数界限探讨[J]. 石油与天然气地质, 2023, 44(6): 1453-1467. |
LI Zhiming, LIU Yahui, HE Jinyi, et al. Limits of critical parameters for sweet-spot interval evaluation of lacustrine shale oil[J]. Oil & Gas Geology, 2023, 44(6): 1453-1467. | |
23 | LIN Tiefeng, LIU Xin, ZHANG Jinyou, et al. Characterization of multi-component and multi-phase fluids in the Upper Cretaceous oil shale from the Songliao Basin (NE China) using T1-T2 NMR correlation maps[J]. Petroleum Science and Technology, 2021, 39(23/24): 1060-1070. |
24 | XU Hao, TANG Dazhen, ZHAO Junlong, et al. A precise measurement method for shale porosity with low-field nuclear magnetic resonance: A case study of the Carboniferous-Permian strata in the Linxing area, eastern Ordos Basin, China[J]. Fuel, 2015, 143: 47-54. |
25 | 党伟, 张金川, 王凤琴, 等. 富有机质页岩-水蒸气吸附热力学与动力学特性——以鄂尔多斯盆地二叠系山西组页岩为例[J]. 石油与天然气地质, 2021, 42(1): 173-185. |
DANG Wei, ZHANG Jinchuan, WANG Fengqin, et al. Thermodynamics and kinetics of water vapor adsorption onto shale: A case study of the Permian Shanxi Formation, Ordos Basin[J]. Oil & Gas Geology, 2021, 42(1): 173-185. | |
26 | 卢双舫, 沈博健, 许晨曦, 等. 利用GCMC分子模拟技术研究页岩气的吸附行为和机理[J]. 地球科学, 2018, 43(5): 1783-1791. |
LU Shuangfang, SHEN Bojian, XU Chenxi, et al. Study on adsorption behavior and mechanism of shale gas by using GCMC molecular simulation[J]. Earth Science, 2018, 43(5): 1783-1791. | |
27 | 房涛, 张立宽, 刘乃贵, 等. 核磁共振技术定量表征致密砂岩气储层孔隙结构——以临清坳陷东部石炭系-二叠系致密砂岩储层为例[J]. 石油学报, 2017, 38(8): 902-915. |
FANG Tao, ZHANG Likuan, LIU Naigui, et al. Quantitative characterization of pore structure of tight gas sandstone reservoirs by NMR T2 spectrum technology: A case study of Carboniferous-Permian tight sandstone reservoir in Linqing Depression[J]. Acta Petrolei Sinica, 2017, 38(8): 902-915. | |
28 | 杨正明, 郭和坤, 姜汉桥, 等. 火山岩气藏不同岩性核磁共振实验研究[J]. 石油学报, 2009, 30(3): 400-403, 408. |
YANG Zhengming, GUO Hekun, JIANG Hanqiao, et al. Experimental study on different lithologic rock of volcanic gas reservoir using nuclear magnetic resonance technique[J]. Acta Petrolei Sinica, 2009, 30(3): 400-403, 408. | |
29 | 李海波, 郭和坤, 周尚文, 等. 低渗透储层可动剩余油核磁共振分析[J]. 西南石油大学学报(自然科学版), 2016, 38(1): 119-127. |
LI Haibo, GUO Hekun, ZHOU Shangwen, et al. NMR analysis of movable remaining oil of low pemeability reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(1): 119-127. | |
30 | FANG Rui, JIANG Yuqiang, SUN Shasha, et al. Controlling factors of organic matter accumulation and lacustrine shale distribution in Lianggaoshan Formation, Sichuan Basin, SW China[J]. Frontiers in Earth Science, 2023, 11: 1218215. |
31 | 方锐, 蒋裕强, 杨长城, 等. 四川盆地侏罗系凉高山组页岩油地质特征[J]. 中国石油勘探, 2023, 28(4): 66-78. |
FANG Rui, JIANG Yuqiang, YANG Changcheng, et al. Geological characteristics of shale oil in the Jurassic Lianggaoshan Formation in Sichuan Basin[J]. China Petroleum Exploration, 2023, 28(4): 66-78. | |
32 | 黎茂稳, 马晓潇, 金之钧, 等. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. |
LI Maowen, MA Xiaoxiao, JIN Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J]. Oil & Gas Geology, 2022, 43(1): 1-25. | |
33 | 雷文智, 陈冬霞, 张芮, 等. 川中地区下侏罗统自流井组大二亚段陆相页岩层系岩性组合类型及其特征[J]. 地球科学, 2021, 46(10): 3657-3672. |
LEI Wenzhi, CHEN Dongxia, ZHANG Rui, et al. Lithological combination types and characteristics of continental shale strata in the second sub-member of Da’anzhai in central Sichuan[J]. Earth Science, 2021, 46(10): 3657-3672. | |
34 | 蒋裕强, 刘雄伟, 付永红, 等. 渝西地区海相页岩储层孔隙有效性评价[J]. 石油学报, 2019, 40(10): 1233-1243. |
JIANG Yuqiang, LIU Xiongwei, FU Yonghong, et al. Evaluation of effective porosity in marine shale reservoir, western Chongqing[J]. Acta Petrolei Sinica, 2019, 40(10): 1233-1243. | |
35 | TESTAMANTI M N, REZAEE R. Determination of NMR T2 cut-off for clay bound water in shales: A case study of Carynginia Formation, Perth Basin, Western Australia[J]. Journal of Petroleum Science and Engineering, 2017, 149: 497-503. |
36 | 李俊乾, 卢双舫, 张鹏飞, 等. 页岩基质孔隙水定量表征及微观赋存机制[J]. 石油学报, 2020, 41(8): 979-990. |
LI Junqian, LU Shuangfang, ZHANG Pengfei, et al. Quantitative characterization and microscopic occurrence mechanism of pore water in shale matrix[J]. Acta Petrolei Sinica, 2020, 41(8): 979-990. | |
37 | CAI Guangyin, GU Yifan, FU Yonghong, et al. Pore system classification of Jurassic Da’anzhai Member Lacustrine Shale: Insight from pore fluid distribution[J]. Energy Exploration & Exploitation, 2023, 41(3): 900-921. |
38 | LI Junqian, ZHANG Pengfei, LU Shuangfang, et al. Microstructural characterization of the clay-rich oil shales by nuclear magnetic resonance (NMR)[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 7026-7034. |
39 | LI Junqian, LU Shuangfang, CAI Jianchao, et al. Adsorbed and free oil in lacustrine nanoporous shale: A theoretical model and a case study[J]. Energy & Fuels, 2018, 32(12): 12247-12258. |
40 | KLEINBERG R L, KENYON W E, MITRA P P. Mechanism of NMR relaxation of fluids in rock[J]. Journal of Magnetic Resonance, Series A, 1994, 108(2): 206-214. |
41 | 聂海宽, 张光荣, 李沛, 等. 页岩有机孔研究现状和展望[J]. 石油学报, 2022, 43(12): 1770-1787. |
NIE Haikuan, ZHANG Guangrong, LI Pei, et al. Research status and prospect on organic matter pores in shale[J]. Acta Petrolei Sinica, 2022, 43(12): 1770-1787. | |
42 | JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(4): 307-325. |
43 | 赵文智, 卞从胜, 蒲秀刚, 等. 中国典型咸化湖盆页岩油富集与流动特征及在 “甜点” 评价中的意义[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 25-37. |
ZHAO Wenzhi, BIAN Congsheng, PU Xiugang, et al. Enrichment and flow characteristics of shale oil in typical salinized lake basins in China and its significance for “sweet spot” evaluation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 25-37. | |
44 | ZHANG Hong, HUANG Haiping, LI Zheng, et al. Oil physical status in lacustrine shale reservoirs-A case study on Eocene Shahejie Formation shales, Dongying Depression, East China[J]. Fuel, 2019, 257: 116027. |
45 | 窦立荣, 黄文松, 孔祥文, 等. 西加盆地Duvernay海相页岩油气富集机制研究[J/OL]. 地学前缘: 1-15[2023-12-13]. . |
DOU Lirong, HUANG Wensong, KONG Xiangwen, et al. Hydrocarbon enrichment mechanism of Duvernay marine shales in the Western Canada Basin[J/OL]. Earth Science Frontiers: 1-15[2023-12-13]. . | |
46 | 徐东升, 李映艳, 邓远, 等. 吉木萨尔芦草沟组页岩油储层润湿性特征与影响因素分析[J]. 科学技术与工程, 2023, 23(28): 12038-12044. |
XU Dongsheng, LI Yingyan, DENG Yuan, et al. Investigation on wettability characteristics and influencing factors of lucaogou shale oil formation in jimusar[J]. Science Technology and Engineering, 2023, 23(28): 12038-12044. | |
47 | 郭芪恒, 李士祥, 金振奎, 等. 鄂尔多斯盆地延长组长73亚段页岩油特征及勘探方向[J]. 石油勘探与开发, 2023, 50(4): 767-781. |
GUO Qiheng, LI Shixiang, JIN Zhenkui, et al. Characteristics and exploration targets of Chang 7 shale oil in Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(4): 767-781. | |
48 | 陈世悦, 张顺, 王永诗, 等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J]. 石油勘探与开发, 2016, 43(2): 198-208. |
CHEN Shiyue, ZHANG Shun, WANG Yongshi, et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(2): 198-208. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[4] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[5] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[6] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[7] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[8] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
[9] | 米立军, 徐建永, 李威. 渤海海域页岩油资源潜力[J]. 石油与天然气地质, 2023, 44(6): 1366-1377. |
[10] | 刘惠民, 李政, 包友书, 张守春, 王伟庆, 吴连波, 王勇, 朱日房, 方正伟, 张顺, 刘鹏, 王敏. 渤海湾盆地济阳坳陷高产页岩油井BYP5页岩地质特征[J]. 石油与天然气地质, 2023, 44(6): 1405-1417. |
[11] | 王民, 余昌琦, 费俊胜, 李进步, 张宇辰, 言语, 吴艳, 董尚德, 唐育龙. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452. |
[12] | 李志明, 刘雅慧, 何晋译, 孙中良, 冷筠滢, 李楚雄, 贾梦瑶, 徐二社, 刘鹏, 黎茂稳, 曹婷婷, 钱门辉, 朱峰. 陆相页岩油“甜点”段评价关键参数界限探讨[J]. 石油与天然气地质, 2023, 44(6): 1453-1467. |
[13] | 方志雄, 肖秋生, 张殿伟, 段宏亮. 苏北盆地陆相“断块型”页岩油地质特征及勘探实践[J]. 石油与天然气地质, 2023, 44(6): 1468-1478. |
[14] | 李明, 王民, 张金友, 张宇辰, 刘召, 雒斌, 卞从胜, 李进步, 王鑫, 赵信斌, 董尚德. 中国典型盆地陆相页岩油组分评价及意义[J]. 石油与天然气地质, 2023, 44(6): 1479-1498. |
[15] | 陈轩, 陶鑫, 覃建华, 许长福, 李映艳, 邓远, 高阳, 尹太举. 准噶尔盆地吉木萨尔凹陷及周缘二叠系芦草沟组异重流沉积[J]. 石油与天然气地质, 2023, 44(6): 1530-1545. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||