石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (2): 462-477.doi: 10.11743/ogg20250209
收稿日期:2024-12-02
修回日期:2025-03-04
出版日期:2025-04-30
发布日期:2025-04-27
第一作者简介:韩双彪(1987—),男,博士、副教授、博士研究生导师,非常规油气地质评价。E‑mail: bjcuphan@163.com。
基金项目:
Shuangbiao HAN1(
), Jin WANG1, Jie HUANG1, Chengshan WANG2
Received:2024-12-02
Revised:2025-03-04
Online:2025-04-30
Published:2025-04-27
摘要:
松辽盆地大陆科学钻探井松科2井中发现了高含量天然氢气,氢气在不同类型岩石储层中吸附特征复杂。通过钻探井天然氢异常显示储层实验测试数据并结合分子动力学方法研究了不同地质条件下不同类型岩石储层中天然氢气吸附特征,根据温度、压力、孔隙直径、孔隙类型及气体竞争吸附因素研究了天然氢气赋存变化规律。研究结果表明:①天然氢异常显示储层中氢气含量最高达26.89 %,矿物以黏土矿物及石英为主,有机质含量相对较高。有机质与黏土矿物的孔隙为富氢天然气吸附孔隙,储层中相对较小尺寸孔隙(孔径0.4 ~ 7.0 nm)可能是氢气赋存的主要空间。②当氢气与甲烷共同存在于孔径大于0.5 nm的孔隙中时,吸附态氢气含量较低,孔隙尺寸变大使得游离态氢气含量升高。蒙脱石吸附氢气能力最强。甲烷的竞争吸附会减少孔隙内的氢气含量,不利于氢气富集。③压力增大使孔隙对氢气吸附能力明显增强,温度升高则会使氢气脱附作用增强。石英与伊利石孔隙中吸附态氢气会随着温度升高更容易转化为游离态。微孔对氢气的吸附作用较强,氢气吸附量主要在微孔中。④研究区深部富铁岩层或地幔活动具有充足的氢气供给,天然氢气可以赋存于深部沉积储层中。烃类气体的生成、氢气吸附向游离状态转化及逸散作用使得氢气含量逐渐降低,形成了以甲烷为主的富氢天然气聚集区域。
中图分类号:
表1
松辽盆地松科2井天然气气体组分"
| 深度/m | 地层 | 岩性 | 气体组分含量/% | |||||
|---|---|---|---|---|---|---|---|---|
| CH4 | C2+烃类 | CO2 | N2 | He | H2 | |||
| 2 808 | 登娄库组 | 粉砂质泥岩 | 71.74 | 2.46 | 0.28 | 5.34 | 0.021 | 20.16 |
| 2 874 | 登娄库组 | 泥质细砂岩 | 75.92 | 3.89 | 0.69 | 4.19 | 0.032 | 15.28 |
| 2 940 | 登娄库组 | 粉砂质泥岩 | 77.42 | 2.92 | 0.92 | 3.26 | 0.042 | 15.44 |
| 3 010 | 营城组 | 粗砂岩 | 88.08 | 1.28 | — | 4.15 | 0.025 | 6.05 |
| 3 080 | 营城组 | 砾岩 | 87.77 | 2.18 | 0.66 | — | 0.007 | 8.07 |
| 3 150 | 营城组 | 流纹质晶屑凝灰熔岩 | 89.67 | 2.01 | 0.55 | 2.08 | 0.013 | 5.68 |
| 3 639 | 沙河子组 | 泥质粉砂岩 | 80.48 | 2.18 | 5.98 | 6.12 | 0.033 | 5.21 |
| 3 810 | 沙河子组 | 泥岩 | 82.40 | 3.09 | 7.84 | 5.25 | 0.058 | 1.36 |
| 3 944 | 沙河子组 | 泥岩 | 85.40 | 2.36 | 5.78 | 3.34 | 0.035 | 3.08 |
| 4 079 | 沙河子组 | 细砂岩 | 83.29 | 1.20 | 12.12 | 1.20 | — | 2.17 |
| 4 281 | 沙河子组 | 泥岩 | 82.62 | 1.23 | 10.62 | 2.33 | 0.015 | 3.18 |
| 4 415 | 沙河子组 | 泥质粉砂岩 | 87.86 | 2.27 | 4.63 | 3.05 | 0.036 | 2.15 |
| 4 500 | 沙河子组 | 泥岩 | 60.42 | 2.13 | 26.70 | — | 0.017 | 3.39 |
| 4 830 | 沙河子组 | 粗砂岩 | 89.68 | 1.21 | 2.71 | 1.44 | 0.082 | 4.88 |
| 5 287 | 沙河子组 | 细砂岩 | 85.27 | 3.15 | — | 4.05 | 0.106 | 5.45 |
| 5 488 | 沙河子组 | 砂质砾岩 | 87.46 | 1.27 | 3.09 | 3.07 | 0.031 | 5.08 |
| 5 600 | 沙河子组 | 砂砾岩 | 86.27 | 2.23 | 7.63 | 1.05 | — | 2.80 |
| 5 760 | 沙河子组 | 凝灰质泥岩 | 76.77 | 1.11 | 18.92 | 1.40 | 0.029 | 1.77 |
| 5 830 | 沙河子组 | 凝灰质泥岩 | 70.99 | 2.17 | 22.70 | 2.09 | 0.026 | 2.02 |
| 5 890 | 沙河子组 | 含角砾凝灰岩 | 82.14 | 1.15 | 13.44 | 1.84 | 0.037 | 1.39 |
| 6 110 | 基底 | 安山岩 | 70.22 | 1.69 | 4.57 | 8.47 | 0.091 | 14.96 |
| 6 225 | 基底 | 复成分砾岩 | 64.11 | 1.09 | 6.99 | 7.81 | 0.132 | 19.87 |
| 6 292 | 基底 | 浅变质含砾粗砂岩 | 66.62 | 0.74 | 5.24 | — | 0.062 | 20.90 |
| 6 324 | 基底 | 安山质沉凝灰角砾岩 | 67.97 | 1.43 | 3.67 | 3.82 | 0.044 | 23.06 |
| 6 396 | 基底 | 安山岩 | 73.63 | 1.06 | 1.98 | 5.58 | — | 17.73 |
| 6 560 | 基底 | 蚀变安山质角砾熔岩 | 68.41 | 0.92 | 11.25 | 1.33 | 0.055 | 18.03 |
| 6 630 | 基底 | 蚀变安山玄武岩 | 73.42 | 0.78 | 8.46 | 2.44 | 0.105 | 14.79 |
| 6 694 | 基底 | 蚀变玄武质火山角砾岩 | 72.88 | 1.21 | — | 3.90 | 0.083 | 19.36 |
| 6 761 | 基底 | 蚀变安山岩 | 62.48 | 1.09 | 7.51 | 1.91 | 0.125 | 26.89 |
| 6 807 | 基底 | 蚀变角砾熔岩 | 82.67 | 0.99 | 3.23 | 2.67 | 0.068 | 10.38 |
表2
典型盆地不同类型岩石中天然氢气含量"
| 沉积盆地 | 岩性 | 氢气含量/% | 资料来源 |
|---|---|---|---|
| 渤海湾盆地 | 泥页岩 | 0.250 0 | 文献[ |
| 楚雄盆地 | 砂岩 | 43.790 0 | 文献[ |
| 鄂尔多斯盆地 | 砂岩 | 0.570 0 | 文献[ |
| 沁水盆地 | 泥页岩 | 0.060 0 | 文献[ |
| 渭河盆地 | 泥页岩 | 14.317 0 | 文献[ |
| 商都盆地 | 砂岩 | 1.550 0 | 文献[ |
| 加拿大铀矿床 | 黏土岩 | 5.600 0(氢气解吸量) | 文献[ |
| 松辽盆地 | 紫色泥岩(埋深2 864.0 m) | 0.904 9(氢气吸附量) | 文献[ |
| 灰色砂岩(埋深2 867.1 m) | 1.129 8(氢气吸附量) | ||
| 灰绿色泥岩(埋深2 923.3 m) | 2.858 4(氢气吸附量) | ||
| 鄂尔多斯盆地 | 无烟煤 | 31.744 0(氢气吸附量) | 文献[ |
| 宁武盆地 | 褐煤 | 10.140 5(氢气吸附量) |
| 1 | PRINZHOFER A, TAHARA CISSÉ C S, DIALLO A B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19315-19326. |
| 2 | ZGONNIK V. The occurrence and geoscience of natural hydrogen: A comprehensive review[J]. Earth-Science Reviews, 2020, 203: 103140. |
| 3 | 金之钧, 王璐. 自然界有氢气藏吗?[J]. 地球科学, 2022, 47(10): 3858-3859. |
| JIN Zhijun, WANG Lu. Is there a hydrogen gas reservoir in nature?[J]. Earth Science, 2022, 47(10): 3858-3859. | |
| 4 | MAIGA O, DEVILLE E, LAVAL J, et al. Trapping processes of large volumes of natural hydrogen in the subsurface: The emblematic case of the Bourakebougou H2 field in Mali[J]. International Journal of Hydrogen Energy, 2024, 50(Part B): 640-647. |
| 5 | COUZIN-FRANKEL J, HAND E, LANGIN K, et al. Runners-up[J]. Science, 2023, 382(6676): 1228-1233. |
| 6 | HAND E. Hidden hydrogen: Does Earth hold vast stores of a renewable, carbon-free fuel?[EB/OL]. (2023-02-16)[网络访问日期缺失]. . |
| 7 | BOREHAM C J, SOHN J H, COX N, et al. Hydrogen and hydrocarbons associated with the Neoarchean Frog’s Leg Gold Camp, Yilgarn Craton, Western Australia[J]. Chemical Geology, 2021, 575: 120098. |
| 8 | LEFEUVRE N, TRUCHE L, DONZÉ F V, et al. Native H2 exploration in the western Pyrenean foothills[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(8): e2021GC009917. |
| 9 | HALAS P, DUPUY A, FRANCESCHI M, et al. Hydrogen gas in circular depressions in South Gironde, France: Flux, stock, or artefact?[J]. Applied Geochemistry, 2021, 127: 104928. |
| 10 | Hydrogen Gold. Significant concentrations of hydrogen and helium detected in the Ramsay 1 Well[EB/OL]. (2023-10-31)[网络访问日期缺失]. . |
| 11 | 李玉宏, 魏仙样, 卢进才, 等. 内蒙古自治区商都盆地新生界氢气成因[J]. 天然气工业, 2007, 27(9): 28-30. |
| LI Yuhong, WEI Xianyang, LU Jincai, et al. Origin of Cenozoic hydrogen in Shangdu Basin, Inner Mongolia autonomous region[J]. Natural Gas Industry, 2007, 27(9): 28-30. | |
| 12 | 谢增业, 张本健, 杨春龙, 等. 川西北地区泥盆系天然气沥青地球化学特征及来源示踪[J]. 石油学报, 2018, 39(10): 1103-1118. |
| XIE Zengye, ZHANG Benjian, YANG Chunlong, et al. Geochemical characteristics and source trace of the Devonian natural gas and bitumen in northwest Sichuan Basin[J]. Acta Petrolei Sinica, 2018, 39(10): 1103-1118. | |
| 13 | HAN Shuangbiao, XIANG Chaohan, DU Xin, et al. Geochemistry and origins of hydrogen-containing natural gases in deep Songliao Basin, China: Insights from continental scientific drilling[J]. Petroleum Science, 2024, 21(2): 741-751. |
| 14 | Natural hydrogen potential and basaltic alteration in the Asal-Ghoubbet rift, Republic of Djibouti[J]. Bulletin de la Société Géologique de France, 2023, 194(1): 9. |
| 15 | DONZÉ F V, TRUCHE L, SHEKARI NAMIN P, et al. Migration of natural hydrogen from deep-seated sources in the São Francisco Basin, Brazil[J]. Geosciences, 2020, 10(9): 346. |
| 16 | VACQUAND C. Genèse et mobilité de l’hydrogène naturel: source d’énergie ou vecteur énergétique stockable?[D]. Paris: Institut de Physique du Globe de Paris, 2011. |
| 17 | MORETTI L, BROUILLY E, LOISEAU K, et al. Hydrogen emanations in intracratonic areas: New guide lines for early exploration basin screening[J]. Geosciences, 2021, 11(3): 145. |
| 18 | SHCHERBAKOV A V, KOZLOVA N D. Occurrence of hydrogen in sub surface fluids and the relationship of anomalous concentrations to deep faults in the USSR[J]. Geotectonics, 1986, 20(2): 120-128. |
| 19 | А ЩЕРБАКОВ. Проблема Bодородных Подземных флюидов. Дегазация Земли игеотектоника[M]. Москва: Наука, 1985: 164-165. |
| 20 | GIARDINI A A, SUBBARAYUDU G V, MELTON C E. The emission of occluded gas from rocks as a function of stress: Its possible use as a tool for predicting earthquakes[J]. Geophysical Research Letters, 1976, 3(6): 355-358. |
| 21 | LIU Ang, LIU Shimin. Hydrogen sorption and diffusion in coals: Implications for hydrogen geo-storage[J]. Applied Energy, 2023, 334: 120746. |
| 22 | WANG Lu, CHENG Jiewei, JIN Zhijun, et al. High-pressure hydrogen adsorption in clay minerals: Insights on natural hydrogen exploration[J]. Fuel, 2023, 344: 127919. |
| 23 | WANG Lu, JIN Zhijun, LIU Quanyou, et al. The occurrence pattern of natural hydrogen in the Songliao Basin, P.R. China: Insights on natural hydrogen exploration[J]. International Journal of Hydrogen Energy, 2024, 50(Part B): 261-275. |
| 24 | 韩双彪, 王缙, 黄劼, 等. 煤岩吸附氢气特征及其地质意义[J]. 煤炭学报, 2024, 49(3): 1501-1517. |
| HAN Shuangbiao, WANG Jin, HUANG Jie, et al. Hydrogen adsorption characteristics of coal rock and its geological significance[J]. Journal of China Coal Society, 2024, 49(3): 1501-1517. | |
| 25 | PAUKERT A N, MATTER J M, KELEMEN P B, et al. Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman[J]. Chemical Geology, 2012, 330/331: 86-100. |
| 26 | 孟庆强, 金之钧, 孙冬胜, 等. 高含量氢气赋存的地质背景及勘探前景[J]. 石油实验地质, 2021, 43(2): 208-216. |
| MENG Qingqiang, JIN Zhijun, SUN Dongsheng, et al. Geological background and exploration prospects for the occurrence of high-content hydrogen[J]. Petroleum Geology and Experiment, 2021, 43(2): 208-216. | |
| 27 | TRUCHE L, JOUBERT G, DARGENT M, et al. Clay minerals trap hydrogen in the Earth’s crust: Evidence from the Cigar Lake Uranium deposit, Athabasca[J]. Earth and Planetary Science Letters, 2018, 493: 186-197. |
| 28 | 黄福堂. 松辽盆地北部天然气的化学组成、成因类型及分布特征研究[J]. 天然气工业, 1996, 16(4): 3-9. |
| HUANG Futang. 3 Chemical composition, genetic classification and distribution characteristics of natural gas in the northern part of Songliao Basin[J]. Natural Gas Industry, 1996, 16(4): 3-9. | |
| 29 | 王璞珺, 刘海波, 任延广, 等. 松辽盆地白垩系大陆科学钻探 “松科2井” 选址[J]. 地学前缘, 2017, 24(1): 216-228. |
| WANG Pujun, LIU Haibo, REN Yanguang, et al. How to choose a right drilling site for the ICDP cretaceous continental scientific drilling in the Songliao Basin (SK2), northeast China[J]. Earth Science Frontiers, 2017, 24(1): 216-228. | |
| 30 | 孙龙德, 冯子辉, 江航, 等. 松辽盆地富氢天然气地质调查与研究[J]. 大庆石油地质与开发, 2024, 43(3): 7-16. |
| SUN Longde, FENG Zihui, JIANG Hang, et al. Geological survey and study of hydrogen-rich natural gas in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(3): 7-16. | |
| 31 | 刘全有, 吴小奇, 孟庆强, 等. 天然氢气: 一种潜在的零碳能源[J]. 科学通报, 2024, 69(17): 2344-2350. |
| LIU Quanyou, WU Xiaoqi, MENG Qingqiang, et al. Natural hydrogen: A potential carbon-free energy source[J]. Chinese Science Bulletin, 2024, 69(17): 2344-2350. | |
| 32 | VACQUAND C, DEVILLE E, BEAUMONT V, et al. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures[J]. Geochimica et Cosmochimica Acta, 2018, 223: 437-461. |
| 33 | 朱康乐. 清水洼陷中深层天然气成因及其成藏机理研究[D]. 北京: 中国石油大学(北京), 2021. |
| ZHU Kangle. Research on origin and accumulation mechanism of mid-deep natural gas in Qingshui Sag[D]. Beijing: China University of Petroleum (Beijing), 2021. | |
| 34 | 李秀梅, 刘映辉, 温景萍. 楚雄盆地乌龙1井天然气的地球化学特征和地质意义[J]. 天然气工业, 2002, 22(5): 16-19, 11. |
| LI Xiumei, LIU Yinghui, WEN Jingping. Geochemical characteristics of the natural gas from Well Wulong-1, Chuxiong Basin, and its geological significance[J]. Natural Gas Industry, 2002, 22(5): 16-19, 11. | |
| 35 | 李小娟. 鄂尔多斯盆地苏里格地区盒8段天然气地球化学特征与气源对比[D]. 成都: 成都理工大学, 2010. |
| LI Xiaojuan. The geochemical characteristics and gas-source correlation in He-8 members of Sulige region, Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2010. | |
| 36 | 尚慧. 煤系页岩矿物组成特征与含气量关系探析[J]. 中国煤炭地质, 2022, 34(8): 41-45, 54. |
| SHANG Hui. Analysis on the relationship between mineral composition characteristics and gas content of coal-measure shale[J]. Coal Geology of China, 2022, 34(8): 41-45, 54. | |
| 37 | 张雪. 渭河盆地天然气及氦气成藏条件与资源量预测[D]. 西安: 长安大学, 2015. |
| ZHANG Xue. Accumulation conditions and resource prediction of nature gas and helium gas in Weihe Basin[D]. Xi’an: Chang’an University, 2015. | |
| 38 | CHEN Junqing, JIANG Fujie, CONG Qi, et al. Adsorption characteristics of shale gas in organic-inorganic slit pores[J]. Energy, 2023, 278: 127788. |
| 39 | 任俊豪, 任晓海, 宋海强, 等. 基于分子模拟的纳米孔内甲烷吸附与扩散特征[J]. 石油学报, 2020, 41(11): 1366-1375. |
| REN Junhao, REN Xiaohai, SONG Haiqiang, et al. Adsorption and diffusion characteristics of methane in nanopores based on molecular simulation[J]. Acta Petrolei Sinica, 2020, 41(11): 1366-1375. | |
| 40 | 黄亮, 陈秋桔, 吴建发, 等. 深层页岩伊利石中甲烷吸附特征分子模拟[J]. 中南大学学报(自然科学版), 2022, 53(9): 3522-3531. |
| HUANG Liang, CHEN Qiujie, WU Jianfa, et al. Molecular simulation of methane adsorption characteristics in illite nanopores of deep shale reservoirs[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3522-3531. | |
| 41 | LI Zhen, ZHANG Jinchuan, MO Xuanxue, et al. Characterization of an angstrom-scale pore structure in organic-rich shales by using low-pressure CO2 adsorption and multifractal theory and its role in CH4/CO2 gas storage[J]. Energy & Fuels, 2022, 36(19): 12085-12103. |
| 42 | PRINZHOFER A, CACAS-STENTZ M C. Natural hydrogen and blend gas: A dynamic model of accumulation[J]. International Journal of Hydrogen Energy, 2023, 48(57): 21610-21623. |
| [1] | 任文希, 曾小军, 王光付, 郭建春, 刘彧轩. 陆相页岩有机质-黏土矿物复合孔隙体系中多组分烃类-水混合物赋存的分子模拟[J]. 石油与天然气地质, 2025, 46(1): 304-314. |
| [2] | 白雪峰, 陆加敏, 李军辉, 孙立东, 杨亮, 刘家军, 许金双, 周翔, 李笑梅, 李国政. 松辽盆地北部白垩系沙河子组煤岩气成藏条件及勘探潜力[J]. 石油与天然气地质, 2025, 46(1): 47-61. |
| [3] | 孟庆强, 金之钧, 刘全有, 孙冬胜, 孙建芳, 朱东亚, 黄晓伟, 周袁, 李强, 魏永波, 苏宇通, 王璐, 李朋朋, 刘润超, 刘佳宜. 天然氢气研究的现状、进展及展望[J]. 石油与天然气地质, 2024, 45(5): 1483-1501. |
| [4] | 苏宇通, 金之钧, 刘润超, 王璐. 非洲马里气田天然氢气井勘探案例介绍及全球天然氢气勘探进展[J]. 石油与天然气地质, 2024, 45(5): 1502-1510. |
| [5] | 李宁, 李瑞磊, 苗贺, 曹开芳, 田军. 松辽盆地深层中-基性火山岩有利相带及储层“甜点”逐级识别[J]. 石油与天然气地质, 2024, 45(3): 801-815. |
| [6] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
| [7] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
| [8] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
| [9] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
| [10] | 刘合, 孟思炜, 王素玲, 董康兴, 杨柳, 陶嘉平, 梁立豪. 古龙页岩力学特征与裂缝扩展机理[J]. 石油与天然气地质, 2023, 44(4): 820-828. |
| [11] | 白斌, 戴朝成, 侯秀林, 杨亮, 王瑞, 王岚, 孟思炜, 董若婧, 刘羽汐. 松辽盆地白垩系青山口组页岩层系非均质地质特征与页岩油甜点评价[J]. 石油与天然气地质, 2023, 44(4): 846-856. |
| [12] | 吕丹, 王华建, 李罡, 张江永, 付秀丽, 刘畅, 王晓梅, 朱如凯, 张水昌. 松辽盆地青山口组页岩沉积水体环境演变的古生物学证据[J]. 石油与天然气地质, 2023, 44(4): 857-868. |
| [13] | 张天舒, 朱如凯, 蔡毅, 王华建, 吕丹, 周海燕, 付秀丽, 刘畅, 崔坤宁, 张素荣, 王浡, 吴松涛, 张婧雅, 姜晓华, 冯有良, 刘合. 松辽盆地古龙凹陷白垩系青山口组页岩层序等时格架下的有机质分布规律[J]. 石油与天然气地质, 2023, 44(4): 869-886. |
| [14] | 严刚, 徐耀辉, 刘保磊, 孙砚泽, 李姗姗, 赵守钰, 钟鸣. 烷基二苯并噻吩类化合物的运移示踪:基于驱替实验和分子模拟的研究[J]. 石油与天然气地质, 2023, 44(2): 510-520. |
| [15] | 王永诗, 李政, 王民, 包友书, 朱日房, 刘军, 吴连波, 于利民. 渤海湾盆地济阳坳陷陆相页岩油吸附控制因素[J]. 石油与天然气地质, 2022, 43(3): 489-498. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||