石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (2): 491-509.doi: 10.11743/ogg20250211
康家豪1,2(
), 王兴志1,2(
), 曾德铭1,2, 黄梓桑2,4, 朱逸青3, 李博3, 谢圣阳3, 张芮3
收稿日期:2024-12-14
修回日期:2025-02-10
出版日期:2025-04-30
发布日期:2025-04-27
通讯作者:
王兴志
E-mail:kjh1371846074@163.com;wxzswpi@163.com
第一作者简介:康家豪(1997—),男,博士研究生,沉积地质学和非常规油气地质学。E-mail: kjh1371846074@163.com。
基金项目:
Jiahao KANG1,2(
), Xingzhi WANG1,2(
), Deming ZENG1,2, Zisang HUANG2,4, Yiqing ZHU3, Bo LI3, Shengyang XIE3, Rui ZHANG3
Received:2024-12-14
Revised:2025-02-10
Online:2025-04-30
Published:2025-04-27
Contact:
Xingzhi WANG
E-mail:kjh1371846074@163.com;wxzswpi@163.com
摘要:
湖相页岩各岩相的矿物网络格架通常具有差异性,对页岩原生孔隙与次生孔隙的形成和演化具有重要影响。以四川盆地中部侏罗系大安寨段页岩为研究对象,用取心井LA1井、RA1井和G10井页岩样品,进行全岩X射线衍射(XRD)分析、总有机碳含量(TOC)测定、扫描电镜(SEM)观察和氮气吸附实验,研究了页岩岩石学特征与孔隙结构特征及其演化机制。研究结果表明:①大安寨段页岩划分为低碳介壳灰质粉砂质页岩岩相(OLLS)、中碳介壳灰质粉砂质页岩岩相(OMLS)、中碳介壳灰质黏土质页岩岩相(OMLC)、中碳粉砂质黏土质页岩岩相(OMSC)、高碳粉砂质黏土质页岩岩相(ORSC)、低碳黏土质页岩岩相(OLAS)以及中碳黏土质页岩岩相(OMAS)7种岩相。②页岩的储集空间主要以黏土矿物晶间孔为主,其中OLLS岩相脆性颗粒粒间孔较为发育,孔隙体积和比表面积相对较低。OMAS和OLAS岩相黏土矿物晶间孔最为发育,孔隙体积和比表面积最高。③碎屑矿物与黏土矿物的组成显著影响黏土矿物晶间孔孔径及有机质和黏土矿物的孔隙体积。碎屑矿物含量 < 25 %时,黏土矿物含量较高且孔隙体积较大,页岩总孔隙体积相应较大;碎屑矿物含量 ≥ 25 %时,有机质孔隙体积较大,但由于TOC变化范围较大,页岩总孔隙体积受有机质和无机矿物共同影响。④矿物-孔隙网络结构演化表明,有机质与矿物组分控制了成岩事件的发生及其强度,导致现今各岩相孔隙结构和孔隙网络结构演化特征具有差异性。
中图分类号:
表1
川中地区LA1井大安寨段页岩样品实验结果统计"
| 样品编号 | 深度/m | TOC/% | 矿物组分含量/% | 孔隙比表面积/(cm2/g) | 孔隙体积/ (cm3/g) | 岩相 | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 石英 | 方解石 | 白云石 | 黄铁矿 | 长石 | 黏土矿物 | ||||||
| LA1-01 | 3 499.30 | 1.75 | 33.10 | 34.00 | 0.80 | 2.60 | 1.00 | 28.50 | 2.71 | 0.009 592 | OMLS |
| LA1-02 | 3 500.00 | 0.88 | 22.00 | 19.00 | 0 | 1.80 | 2.00 | 55.20 | 3.77 | 0.016 280 | OLAS |
| LA1-03 | 3 503.00 | 1.78 | 30.00 | 33.20 | 2.00 | 1.50 | 1.20 | 32.10 | 3.67 | 0.013 330 | OMLC |
| LA1-04 | 3 505.02 | 2.40 | 24.30 | 20.90 | 3.20 | 1.60 | 7.00 | 43.00 | 3.35 | 0.012 580 | ORSC |
| LA1-05 | 3 508.20 | 1.74 | 20.20 | 35.00 | 0 | 1.20 | 1.00 | 42.60 | 1.89 | 0.008 353 | OMLC |
| LA1-06 | 3 509.20 | 1.71 | 24.30 | 28.70 | 0 | 1.00 | 4.00 | 42.00 | 3.39 | 0.012 370 | OMLC |
| LA1-07 | 3 510.97 | 1.62 | 19.00 | 31.00 | 6.00 | 3.00 | 3.90 | 37.10 | 2.50 | 0.010 400 | OMLC |
| LA1-09 | 3 521.10 | 0.66 | 27.50 | 45.00 | 0 | 2.00 | 3.50 | 22.00 | 1.32 | 0.005 092 | OLLS |
| LA1-10 | 3 526.85 | 0.51 | 28.30 | 46.30 | 0 | 0.50 | 2.20 | 22.70 | 1.99 | 0.006 451 | OLLS |
| LA1-11 | 3 532.15 | 1.28 | 14.00 | 48.00 | 1.10 | 3.10 | 2.00 | 31.80 | 0.73 | 0.002 514 | OMLC |
| LA1-12 | 3 535.20 | 0.70 | 32.00 | 40.80 | 0 | 0.70 | 2.20 | 24.30 | 1.61 | 0.006 182 | OLLS |
| LA1-13 | 3 527.46 | 1.10 | 43.10 | 15.10 | 0 | 2.20 | 4.30 | 34.50 | 1.89 | 0.011 640 | OMSC |
| LA1-14 | 3 528.40 | 1.40 | 32.60 | 20.20 | 0 | 1.30 | 4.10 | 41.00 | 2.93 | 0.010 687 | OMSC |
| LA1-15 | 3 532.10 | 1.21 | 24.10 | 19.00 | 0.10 | 2.40 | 1.00 | 52.40 | 4.98 | 0.017 800 | OMAS |
图4
川中地区大安寨段页岩岩相宏观与微观特征显微照片a1.介壳灰质粉砂质页岩见断续状介壳纹层,埋深3 470.64 ~ 3 470.79 m,LA1井,岩心;a2.介壳与碎屑矿物的混合沉积,埋深3 516.00 m,LA1井,普通薄片;a3.次棱角状碎屑颗粒分选磨圆差,埋深3 516.05 m,LA1井,SEM;b1.介壳灰质黏土质页岩见连续状介壳纹层,埋深2 449.94.64 ~ 2 450.06 m,RA1井,岩心;b2.介壳与泥质界面清晰,埋深3 517.38 m,LA1井,普通薄片;b3.介壳化石与碎屑颗粒的顺层排列,埋深3 516.05 m,LA1井,SEM;c1.粉砂质黏土质页岩见零星介壳化石,埋深3 523.61 ~ 3 523.67 m,LA1井,岩心;c2.砂质纹层,埋深3 496.15 m,LA1井,普通薄片;c3.次圆状碎屑颗粒分选磨圆较好,埋深2 461.05 m,RA1井,SEM;d1.黏土质页岩呈块状,埋深2 485.12 ~ 2 485.27 m,RA1井,岩心;d2.水平裂缝,埋深2 450.83 m,RA1井,普通薄片;d3.片状黏土矿物顺层发育,埋深2 685.35 m,G10井,SEM"
图6
川中地区大安寨段页岩储集空间类型SEM照片a.有机质未发育有机质孔,埋深3 526.68 m,LA1井;b.固体沥青分布于黏土矿物内部,埋深3 507.40 m,LA1井;c.不规则状有机质孔,埋深3 507.40 m,LA1井;d.石英颗粒发育粒间孔,埋深2 423.70 m,RA1井;e.颗粒边缘孔呈弯月状,埋深3 494.06 m,LA1井;f.黏土矿物晶间孔、层间微裂缝,埋深3 515.21 m,LA1井;g.黏土矿物晶间孔、颗粒边缘孔充填有机质,埋深3 494.06 m,LA1井;h.黄铁矿结核内孔,埋深3 507.40 m,LA1井;i.方解石粒内溶孔与介壳边缘缝,埋深2 443.17 m,RA1井"
图8
川中地区大安寨段页岩矿物-孔隙网络格架发育特征及其对孔隙发育的影响a1.w(Q+F) < 25 %岩相的矿物-孔隙网络格架;a2.碎屑颗粒与黏土矿物平行排列;a3.黏土矿物位于碎屑颗粒下部;a4.黏土矿物位于碎屑颗粒上部;a5.黏土矿物发育大量片状孔隙,埋深2 453.14 m,RA1井,SEM照片;a6.孔隙因压实而闭合,埋深3 494.06 m,LA1井,SEM照片;b1.w(Q+F) ≥ 25 %岩相的矿物-孔隙网络格架;b2.黏土矿物充填于碎屑颗粒之间;b3.黏土矿物位于碎屑颗粒下部;b4.颗粒粒间的有机质发育孔隙,埋深2 453.14 m,RA1井,SEM照片;b5.粒间充填的黏土矿物不发育孔隙,埋深2 423.70 m,RA1井,SEM照片(w(Q+F)为碎屑矿物质量分数。)"
表2
川中地区大安寨段页岩样品数据线性回归分析统计结果"
w(Q+F)/ % | 岩相 | 样品编号 | 深度/m | 孔隙比表面积/(cm2/g) | 孔隙体积/ (cm3/g) | 估计孔隙比表面积/(cm2/g) | 估计孔隙体积/(cm3/g) | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 有机质 | 黏土矿物 | 有机质 | 碎屑矿物 | 黏土矿物 | |||||||
| <25 | OLAS | LA1-02 | 3 500.00 | 3.77 | 0.016 280 | 0.37 | 3.92 | 0.001 686 | — | 0.015 271 | |
| OMAS | LA1-15 | 3 532.10 | 4.98 | 0.017 800 | 0.51 | 3.64 | 0.002 319 | — | 0.014 179 | ||
| OMLC | LA1-05 | 3 508.20 | 1.89 | 0.008 353 | 0.74 | 1.98 | 0.003 334 | — | 0.007 629 | ||
| OMLC | LA1-07 | 3 510.97 | 2.50 | 0.010 400 | 0.69 | 1.14 | 0.003 104 | — | 0.004 293 | ||
| OMLC | LA1-11 | 3 532.15 | 0.73 | 0.002 514 | 0.54 | 0.32 | 0.002 453 | — | 0.001 078 | ||
| ≥25 | OLLS | LA1-09 | 3 521.10 | 1.32 | 0.005 092 | 0.64 | 0.42 | 0.001 849 | 0.003 392 | 0.003 078 | |
| OLLS | LA1-10 | 3 526.85 | 1.99 | 0.006 451 | 0.50 | 0.43 | 0.001 429 | 0.003 338 | 0.003 175 | ||
| OLLS | LA1-12 | 3 535.20 | 1.61 | 0.006 182 | 0.68 | 0.46 | 0.001 961 | 0.003 743 | 0.003 399 | ||
| OMLS | LA1-01 | 3 499.30 | 2.71 | 0.009 592 | 1.71 | 0.54 | 0.004 902 | 0.003 732 | 0.003 987 | ||
| OMLC | LA1-03 | 3 503.00 | 3.67 | 0.013 330 | 1.74 | 0.61 | 0.004 986 | 0.003 414 | 0.004 490 | ||
| OMLC | LA1-06 | 3 509.20 | 3.39 | 0.012 370 | 1.67 | 0.80 | 0.004 790 | 0.003 097 | 0.005 875 | ||
| OMSC | LA1-13 | 3 527.46 | 1.89 | 0.011 640 | 1.07 | 0.65 | 0.003 081 | 0.005 187 | 0.004 826 | ||
| OMSC | LA1-14 | 3 528.40 | 2.93 | 0.010 687 | 1.37 | 0.78 | 0.003 922 | 0.004 016 | 0.005 735 | ||
| ORSC | LA1-04 | 3 505.02 | 3.35 | 0.012 580 | 2.35 | 0.82 | 0.006 723 | 0.003 425 | 0.006 015 | ||
| 1 | APLIN A C, MACQUAKER J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059. |
| 2 | 黎茂稳, 马晓潇, 金之钧, 等. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. |
| LI Maowen, MA Xiaoxiao, JIN Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J]. Oil & Gas Geology, 2022, 43(1): 1-25. | |
| 3 | TIWARI P, DEO M, LIN C L, et al. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT[J]. Fuel, 2013, 107: 547-554. |
| 4 | ROSS D J K, MARC BUSTIN R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927. |
| 5 | 冯增昭. 沉积相的一些术语定义的评论[J]. 古地理学报, 2020, 22(2): 207-220. |
| FENG Zengzhao. A review on the definitions of terms of sedimentary facies[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(2): 207-220. | |
| 6 | WANG Yang, CHENG Hongfei, HU Qinhong, et al. Diagenesis and pore evolution for various lithofacies of the Wufeng-Longmaxi shale, southern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2021, 133: 105251. |
| 7 | ZHANG Luchuan, XIAO Dianshi, LU Shuangfang, et al. Pore development of the Lower Longmaxi shale in the southeastern Sichuan Basin and its adjacent areas: Insights from lithofacies identification and organic matter[J]. Marine and Petroleum Geology, 2020, 122: 104662. |
| 8 | 钱计安, 蒋裕强, 罗彤彤, 等. 页岩储层渗吸过程微观孔缝演变特征及影响因素——以四川盆地渝西地区龙马溪组龙一1亚段为例[J]. 石油实验地质, 2024, 46(6): 1336-1348. |
| QIAN Ji’an, JIANG Yuqiang, LUO Tongtong, et al. Microscopic pore and fracture evolution characteristics and influencing factors during imbibition process of shale reservoirs: A case study of the first section of the first member[J]. Petroleum Geology & Experiment, 2024, 46(6): 1336-1348. | |
| 9 | 胡宗全, 刘忠宝, 李倩文, 等. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨——以四川盆地侏罗系页岩层段为例[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
| HU Zongquan, LIU Zhongbao, LI Qianwen, et al. Exploring source rock-reservoir coupling mechanisms in lacustrine shales based on varying-scale lithofacies assemblages: A case study of the Jurassic shale intervals in the Sichuan Basin[J]. Oil & Gas Geology, 2024, 45(4): 893-909. | |
| 10 | 姜龙燕, 钱门辉, 何发岐, 等. 鄂尔多斯盆地富县地区三叠系延长组长7页岩油特征及其主控因素[J]. 石油实验地质, 2024, 46(5): 941-953. |
| JIANG Longyan, QIAN Menhui, HE Faqi, et al. Characteristics and main controlling factors of Chang 7 shale oil in Triassic Yanchang Formation, Fuxian area, Ordos Basin[J]. Petroleum Geology and Experiment, 2024, 46(5): 941-953. | |
| 11 | 柳波, 孙嘉慧, 张永清, 等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发, 2021, 48(3): 521-535. |
| LIU Bo, SUN Jiahui, ZHANG Yongqing, et al. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535. | |
| 12 | 彭君, 孙宁亮, 鹿坤, 等. 东濮凹陷古近系沙河街组页岩油储层岩石学及微观孔隙结构特征[J]. 地学前缘, 2023, 30(4): 128-141. |
| PENG Jun, SUN Ningliang, LU Kun, et al. Shale oil reservoir of the Palaeogene Shahejie Formation in the Dongpu Sag: Petrology and pore microstructural characteristics[J]. Earth Science Frontiers, 2023, 30(4): 128-141. | |
| 13 | 康家豪, 王兴志, 谢圣阳, 等. 川中地区侏罗系大安寨段页岩岩相类型及储层特征[J]. 岩性油气藏, 2022, 34(4): 53-65. |
| KANG Jiahao, WANG Xingzhi, XIE Shengyang, et al. Lithofacies types and reservoir characteristics of shales of Jurassic Da’anzhai member in central Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(4): 53-65. | |
| 14 | MILLIKEN K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84(12): 1185-1199. |
| 15 | YANG Wei, ZUO Rusi, JIANG Zhenxue, et al. Effect of lithofacies on pore structure and new insights into pore-preserving mechanisms of the over-mature Qiongzhusi marine shales in Lower Cambrian of the southern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 98: 746-762. |
| 16 | ZHANG Luchuan, LU Shuangfang, JIANG Shu, et al. Effect of shale lithofacies on pore structure of the Wufeng-Longmaxi shale in southeast Chongqing, China[J]. Energy & Fuels, 2018, 32(6): 6603-6618. |
| 17 | 何文渊, 白雪峰, 蒙启安, 等. 四川盆地陆相页岩油成藏地质特征与重大发现[J]. 石油学报, 2022, 43(7): 885-898. |
| HE Wenyuan, BAI Xuefeng, MENG Qian, et al. Accumulation geological characteristics and major discoveries of lacustrine shale oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(7): 885-898. | |
| 18 | 李楠, 洪海涛, 赵正望, 等. 川东地区侏罗系大安寨段页岩储层特征及发育控制因素[J]. 断块油气田, 2024, 31(2): 187-196. |
| LI Nan, HONG Haitao, ZHAO Zhengwang, et al. Characteristics and development controlling factors of shale reservoirs of Jurassic Da’anzhai Member in eastern Sichuan Basin[J]. Fault-Block Oil and Gas Field, 2024, 31(2): 187-196. | |
| 19 | 刘忠宝, 李倩文, 刘光祥, 等. 川北地区大安寨段页岩油气源、储特征及富集层段优选[J]. 地质学报, 2023, 97(10): 3421-3437. |
| LIU Zhongbao, LI Qianwen, LIU Guangxiang, et al. Source and reservoir characteristics as well as optimization of favorable shale oil and gas enrichment intervals of the Da’anzhai Member in northern Sichuan[J]. Acta Geologica Sinica, 2023, 97(10): 3421-3437. | |
| 20 | 杨跃明, 文龙, 王兴志, 等. 四川盆地下侏罗统大安寨段页岩油气地质特征及勘探有利区优选[J]. 天然气工业, 2023, 43(4): 32-42. |
| YANG Yueming, WEN Long, WANG Xingzhi, et al. Geological characteristics and favorable exploration area selection of shale oil and gas of the Lower Jurassic Da’anzhai Member in the Sichuan Basin[J]. Natural Gas Industry, 2023, 43(4): 32-42. | |
| 21 | 丁一, 李智武, 冯逢, 等. 川中龙岗地区下侏罗统自流井组大安寨段湖相混合沉积及其致密油勘探意义[J]. 地质论评, 2013, 59(2): 389-400. |
| DING Yi, LI Zhiwu, FENG Feng, et al. Mixing of lacustrine siliciclastic-carbonate sediments and its significance for tight oil exploration in the Da’anzhai member, Ziliujing Formation, Lower Jurassic, in Longgang area, central Sichuan Basin[J]. Geological Review, 2013, 59(2): 389-400. | |
| 22 | 施振生, 赵圣贤, 周天琪, 等. 海相含气页岩水平层理类型、成因及其页岩气意义——以川南地区古生界五峰组-龙马溪组为例[J]. 石油与天然气地质, 2023, 44(6): 1499-1514. |
| SHI Zhensheng, ZHAO Shengxian, ZHOU Tianqi, et al. Types and genesis of horizontal bedding of marine gas-bearing shale and its significance for shale gas: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Oil & Gas Geology,2023,44(6):1499-1514. | |
| 23 | 王濡岳, 胡宗全, 赖富强, 等. 川东北地区下侏罗统自流井组大安寨段陆相页岩脆性特征及其控制因素[J]. 石油与天然气地质, 2023, 44(2): 366-378. |
| WANG Ruyue, HU Zongquan, LAI Fuqiang, et al. Brittleness features and controlling factors of continental shale from Da’anzhai Member of the Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(2): 366-378. | |
| 24 | 孔祥晔, 曾溅辉, 罗群, 等. 川中地区大安寨段陆相页岩岩相对孔隙结构的控制作用[J]. 新疆石油地质, 2023, 44(4): 392-403. |
| KONG Xiangye, ZENG Jianhui, LUO Qun, et al. Controls of continental shale lithofacies on pore structure of Jurassic Da’anzhai member in central Sichuan basin[J]. Xinjiang Petroleum Geology, 2023, 44(4): 392-403. | |
| 25 | 洪海涛, 路俊刚, 秦春雨, 等. 川中侏罗系自流井组大安寨段页岩油储层特征及其勘探启示[J]. 石油实验地质, 2024, 46(1): 11-21. |
| HONG Haitao, LU Jungang, QIN Chunyu, et al. Shale oil reservoir characteristics and exploration implication in Da’anzhai Member of Jurassic Ziliujing Formation in central Sichuan Basin[J]. Petroleum Geology and Experiment, 2024, 46(1): 11-21. | |
| 26 | 李倩文, 刘忠宝, 陈斐然, 等. 四川盆地侏罗系页岩层系岩相类型及储集特征——以元坝地区Y2井大安寨段为例[J]. 石油与天然气地质, 2022, 43(5): 1127-1140. |
| LI Qianwen, LIU Zhongbao, CHEN Feiran, et al. Lithofacies types and reservoir characteristics of Jurassic shale in the Sichuan Basin revealed by the Da’anzhai member, Well Y2, Yuanba area[J]. Oil & Gas Geology, 2022, 43(5): 1127-1140. | |
| 27 | 郑荣才, 郭春利, 梁西文, 等. 四川盆地大安寨段非常规储层的储集空间类型与评价[J]. 岩性油气藏, 2016, 28(1): 16-29. |
| ZHENG Rongcai, GUO Chunli, LIANG Xiwen, et al. Characteristics and evaluation of reservoir spaces of shale gas (oil) in Da’anzhai member of Ziliujing Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(1): 16-29. | |
| 28 | 郑荣才. 四川盆地下侏罗统大安寨段高分辨率层序地层学[J]. 沉积学报, 1998, 16(2): 42-49. |
| ZHENG Rongcai. High resolution sequence stratigraphy of Da’anzhai Formation, Lower Jurassic in Sichuan Basin[J]. Acta Sedimentologica Sinica, 1998, 16(2): 42-49. | |
| 29 | 杜江民, 张小莉, 张帆, 等. 川中龙岗地区下侏罗统大安寨段沉积相分析及有利储集层预测[J]. 古地理学报, 2015, 17(4): 493-502. |
| DU Jiangmin, ZHANG Xiaoli, ZHANG Fan, et al. Sedimentary facies and reservoir prediction of the Lower Jurassic Da’anzhai Member, Longgang area, central Sichuan Basin[J]. Journal of Palaeogeography (Chinese Edition), 2015, 17(4): 493-502. | |
| 30 | 张宇, 杜垚, 刘耘, 等. 四川盆地侏罗系大安寨段湖相页岩油气基本特征及勘探方向[J]. 中国地质, 2022, 49(1): 51-65. |
| ZHANG Yu, DU Yao, LIU Yun, et al. Basic characteristics and exploration direction of lacustrine shale oil and gas in Da’anzhai member of Jurassic in Sichuan Basin[J]. Geology in China, 2022, 49(1): 51-65. | |
| 31 | 张少敏, 杨跃明, 洪海涛, 等. 陆相页岩层段储集特征及其油气地质意义——以四川盆地中部大安寨段为例[J]. 中国矿业大学学报, 2022, 51(4): 718-730. |
| ZHANG Shaomin, YANG Yueming, HONG Haitao, et al. Reservoir characteristics and its petroleum significance of Jurassic Da’anzhai shale interval in central Sichuan Basin, SW China[J]. Journal of China University of Mining & Technology, 2022, 51(4): 718-730. | |
| 32 | 施开兰, 陈芳文, 段卓, 等. 重庆北碚和平水库剖面下侏罗统大安寨段湖相碳酸盐岩岩石类型及沉积环境[J]. 古地理学报, 2015, 17(2): 198-212. |
| SHI Kailan, CHEN Fangwen, DUAN Zhuo, et al. Lacustrine carbonate rock types and sedimentary environments of the Lower Jurassic Da’anzhai Member of Heping Reservoir section in Beibei area, Chongqing[J]. Journal of Palaeogeography, 2015, 17(2): 198-212. | |
| 33 | 王昕尧, 金振奎, 朱毅秀, 等. 四川盆地自流井组陆相页岩石英成因研究[J]. 沉积学报, 2022, 40(4): 1010-1018. |
| WANG Xinyao, JIN Zhenkui, ZHU Yixiu, et al. The genesis of quartz in Ziliujing nonmarine shale, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1010-1018. | |
| 34 | 李志明, 刘雅慧, 何晋译, 等. 陆相页岩油“甜点”段评价关键参数界限探讨[J]. 石油与天然气地质, 2023, 44(6): 1453-1467. |
| LI Zhiming, LIU Yahui, HE Jinyi, et al. Limits of critical parameters for sweet-spot interval evaluation of lacustrine shale oil[J]. Oil & Gas Geology, 2023, 44(6): 1453-1467. | |
| 35 | ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Depositional environment of shale in Wufeng and Longmaxi Formations, Sichuan Basin[J]. Petroleum Research, 2017, 2(3): 209-221. |
| 36 | JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. |
| 37 | 孙龙德, 王小军, 冯子辉, 等. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
| SUN Longde, WANG Xiaojun, FENG Zihui, et al. Formation mechanisms of nano-scale pores/fissures and shale oil enrichment characteristics for Gulong shale, Songliao Basin[J]. Oil & Gas Geology, 2023, 44(6): 1350-1365. | |
| 38 | LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. |
| 39 | MENG Qingfeng, HAO Fang, TIAN Jinqiang. Origins of non-tectonic fractures in shale[J]. Earth-Science Reviews, 2021, 222: 103825. |
| 40 | WU Lanyu, LU Yangbo, JIANG Shu, et al. Pore structure characterization of different lithofacies in marine shale: A case study of the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formation in the Sichuan Basin, SW China[J]. Journal of Natural Gas Science and Engineering, 2018, 57: 203-215. |
| 41 | 王昕尧, 金振奎, 郭芪恒, 等. 川东北下侏罗统大安寨段陆相页岩方解石成因[J]. 沉积学报, 2021, 39(3): 704-712. |
| WANG Xinyao, JIN Zhenkui, GUO Qiheng, et al. Genesis of calcite in nonmarine shale of the Lower Jurassic Da’anzhai member, northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 704-712. | |
| 42 | 曹涛涛, 宋之光, 王思波, 等. 不同页岩及干酪根比表面积和孔隙结构的比较研究[J]. 中国科学(地球科学), 2015, 45(2): 139-151. |
| CAO Taotao, SONG Zhiguang, WANG Sibo, et al. A comparative study of the specific surface area and pore structure of different shales and their kerogens[J]. Science China Earth Sciences, 2015, 45(2): 139-151. | |
| 43 | XIE Weidong, WANG Meng, DUAN Hongyue. Adsorption characteristics and controlling factors of CH4 on coal-measure shale, Hedong coalfield[J]. Minerals, 2021, 11(1): 63. |
| 44 | ZHU Yixiu, LI Zezhou, ZENG Lianbo, et al. Diagenesis and its impact on the reservoir quality of continental shales: A case study of the Lower Jurassic Da’anzhai member of the Ziliujing Formation in the Sichuan Basin, China[J]. Geofluids, 2022, 2022: 5942370. |
| 45 | JIANG Daiqin, LI Pingping, ZHENG Mingjun, et al. Impacts of different matrix components on multi-scale pore structure and reservoir capacity: Insights from the Jurassic Da’anzhai member in the Yuanba area, Sichuan Basin[J]. Energy Reports, 2023, 9: 1251-1264. |
| 46 | LI Peng, LIU Zhongbao, NIE Haikuan, et al. Heterogeneity characteristics of lacustrine shale oil reservoir under the control of lithofacies: A case study of the Dongyuemiao member of Jurassic Ziliujing Formation, Sichuan Basin[J]. Frontiers in Earth Science, 2021, 9: 736544. |
| 47 | RIMSTIDT J D, CHERMAK J A, SCHREIBER M E. Processes that control mineral and element abundances in shales[J]. Earth-Science Reviews, 2017, 171: 383-399. |
| 48 | BAI Bin, DAI Chaocheng, HOU Xiulin, et al. Authigenic silica in continental lacustrine shale and its hydrocarbon significance[J]. Petroleum Exploration and Development, 2022, 49(5): 1033-1045. |
| 49 | 李颖莉, 蔡进功. 泥质烃源岩中蒙脱石伊利石化对页岩气赋存的影响[J]. 石油实验地质, 2014, 36(3): 352-358. |
| LI Yingli, CAI Jingong. Effect of smectite illitization on shale gas occurrence in argillaceous source rocks[J]. Petroleum Geology and Experiment, 2014, 36(3): 352-358. |
| [1] | 游祖辉, 赵建华, 蒲秀刚, 刘可禹, 张伟, 王志昊, 时战楠, 韩文中, 官全胜, 王纪扬. 渤海湾盆地黄骅坳陷歧北次凹古近系沙河街组三段一亚段页岩含油性控制因素与页岩油富集模式[J]. 石油与天然气地质, 2025, 46(2): 443-461. |
| [2] | 苏楠, 陈竹新, 翟咏荷, 潘颖, 王丽宁, 任荣, 张宇轩, 谢武仁, 武赛军. 四川盆地北部前陆构造叠加区正断层成因机制[J]. 石油与天然气地质, 2025, 46(2): 478-490. |
| [3] | 熊钰, 牛全锋, 孙泽威, 江俊, 张春. 采气速度对不同储集空间类型碳酸盐岩气藏水侵动态的影响[J]. 石油与天然气地质, 2025, 46(2): 654-669. |
| [4] | 鲍李银, 庞雄奇, 崔新璇, 陈宏飞, 高军, 邹亮, 赵振丞, 王琛茜, 王雷, 李闻东, 刘利. 准噶尔盆地金龙油田二叠系佳木河组火山岩岩相组合及产能差异[J]. 石油与天然气地质, 2025, 46(1): 136-150. |
| [5] | 杨跃明, 王茂云, 吴长江, 曾溅辉, 潘珂, 张欢乐, 王小娟, 陈冬霞, 崔虎旺. 川中地区侏罗系沙溪庙组二段富钙地层水成因及其对天然气运聚的指示意义[J]. 石油与天然气地质, 2025, 46(1): 178-191. |
| [6] | 郭杰, 肖笛, 罗冰, 张本健, 陈骁, 张玺华, 李明隆, 谭秀成. 川东地区中二叠世茅口组台-槽分异演化及常规-非常规天然气勘探有利区新发现[J]. 石油与天然气地质, 2025, 46(1): 192-210. |
| [7] | 王馨佩, 刘成林, 蒋立伟, 冯德浩, 邹辰, 刘飞, 李君军, 贺昱搏, 董明祥, 焦鹏飞. 渝西大安地区五峰组-龙马溪组深层页岩微观孔隙结构与含气性控制因素[J]. 石油与天然气地质, 2025, 46(1): 230-245. |
| [8] | 吴丰, 梁芸, 唐松, 李昱翰, 田兴旺, 杨辉廷, 李锋. 深层含沥青溶孔-溶洞型碳酸盐岩微观导电特性[J]. 石油与天然气地质, 2025, 46(1): 288-303. |
| [9] | 任文希, 曾小军, 王光付, 郭建春, 刘彧轩. 陆相页岩有机质-黏土矿物复合孔隙体系中多组分烃类-水混合物赋存的分子模拟[J]. 石油与天然气地质, 2025, 46(1): 304-314. |
| [10] | 文龙, 明盈, 孙豪飞, 张本健, 陈骁, 陈世达, 李松, 李海琪. 四川盆地二叠系龙潭组深层煤岩气地质特征与勘探潜力[J]. 石油与天然气地质, 2024, 45(6): 1678-1685. |
| [11] | 刘景东, 任成刚, 王小娟, 潘珂, 王少华, 庞小婷, 关旭. 川中地区中侏罗统沙溪庙组断层输导有效性定量评价[J]. 石油与天然气地质, 2024, 45(6): 1705-1719. |
| [12] | 赵圣贤, 刘勇, 李博, 陈鑫, 刘东晨, 尹美璇, 常莹, 蒋睿. 四川盆地泸州区块五峰组-龙马溪组页岩气储层孔隙连通性特征及模式[J]. 石油与天然气地质, 2024, 45(6): 1720-1735. |
| [13] | 张洪, 冯有良, 刘畅, 杨智, 伍坤宇, 龙国徽, 姚健欢, 孟博文, 邢浩婷, 蒋文琦, 王小妮, 魏琪钊. 柴达木盆地干柴沟地区古近系下干柴沟组上段页岩层系优势岩相及其控储因素[J]. 石油与天然气地质, 2024, 45(5): 1305-1320. |
| [14] | 彭军, 刘芳兰, 张连进, 郑斌嵩, 唐松, 李顺, 梁新玉. 川中龙女寺地区中二叠统茅口组储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1337-1354. |
| [15] | 王威, 刘珠江, 魏富彬, 李飞. 川东北地区二叠系大隆组页岩储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1355-1367. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||