石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (6): 1840-1859.doi: 10.11743/ogg20250607
聂海宽1,2,3(
), 苏海琨4, 张珂4, 林拓5(
), 刘忠宝1,2,3, 李沛1,2,3, 戎佳1,2,3, 王宇哲6
收稿日期:2025-07-01
修回日期:2025-12-17
出版日期:2025-12-30
发布日期:2025-12-25
通讯作者:
林拓
E-mail:niehk.syky@sinopec.com;everdeer@163.com
第一作者简介:聂海宽(1982—),博士、研究员,非常规油气地质。E-mail:niehk.syky@sinopec.com。
基金项目:
Haikuan NIE1,2,3(
), Haikun SU4, Ke ZHANG4, Tuo LIN5(
), Zhongbao LIU1,2,3, Pei LI1,2,3, Jia RONG1,2,3, Yuzhe WANG6
Received:2025-07-01
Revised:2025-12-17
Online:2025-12-30
Published:2025-12-25
Contact:
Tuo LIN
E-mail:niehk.syky@sinopec.com;everdeer@163.com
摘要:
四川盆地寒武系页岩气勘探取得重大突破,发现了目前全球地质时代最古老的页岩气藏。为揭示古老层系页岩气富集机理,以中-上扬子地区寒武系页岩为研究对象,结合勘探开发资料,系统分析了页岩岩相、储层、地化特征和气藏类型,重点研究了保存条件。研究表明:①研究区下寒武统发育富有机质[总有机碳含量(TOC) > 3%]和贫有机质(TOC < 1%)两类页岩,页岩有机质类型好(以Ⅰ-Ⅱ1型为主)、热演化程度高[等效镜质体反射率(EqVRo) > 3.0%],形成了自生自储型和运移聚集型两类页岩气藏。②优质储层和有机质热演化程度共同控制古老页岩气藏的形成。页岩优质储层的发育受控于成岩作用和生烃成孔演化的协同效应。③保存条件是古老页岩气富集的关键控制因素。德阳-安岳裂陷槽因构造稳定,形成了压力系数为1.6 ~ 2.0的超压,页岩气富集程度高。④建议优先在热演化程度相对较低(EqVRo < 3.5%)且保存条件良好的区域进行页岩气勘探。⑤寒武系古老页岩气资源潜力评价需重点关注超深层页岩气保存条件极限、优质储层形成机理、高-过成熟页岩生/排烃和滞留烃量定量表征等关键科学问题。
中图分类号:
图4
上扬子地区下寒武统页岩储层储集空间类型及特征扫描电镜照片a. 金页1井,筇竹寺组,埋深3 297.63 m, 富有机质黑色页岩,生物石英与碎屑石英形成较好的硅质格架,粒间孔较发育并充填大量有机质,有机质孔较发育;b. 金页1井,筇竹寺组,埋深3 575.65 m, 富有机质黑色页岩,石英颗粒之间粒间孔充填有机质,有机质孔发育显著; c. 岑页1井,牛蹄塘组,埋深1 445.35 m,富有机质黑色页岩,碎屑石英发育大量粒间孔并充填有机质,可见溶蚀孔与微裂缝;d. 岑页1井,牛蹄塘组,埋深1 451.45 m,富有机质黑色页岩,碎屑石英和有机质,有机孔发育差; e. 金页1井,筇竹寺组,埋深3 575.71 m, 贫有机质黑色页岩,发育草莓状黄铁矿粒间孔、矿物颗粒粒间孔;f. 金页1井,筇竹寺组,埋深3 304.31 m,贫有机质黑色页岩,发育矿物颗粒粒间孔、黏土矿物层间孔;g. 金页1井,筇竹寺组,埋深3 308.58 m,贫有机质黑色页岩,发育大量黏土矿物层间孔;h. 金页1井,筇竹寺组,埋深3 522.48 m,贫有机质黑色页岩,可见矿物颗粒内发育溶蚀孔(g图中绿色文字表示孔隙直径。)"
表1
上扬子地区下寒武统典型页岩气藏(井)特征"
| 地区 | 川中古隆起南斜坡 | 川中古隆起北斜坡 | 黔中古隆起东缘 | 黔东南凹陷 | 宜昌黄陵隆起周边 | 渝东南 | 湘鄂西 | 渝东南 | ||
|---|---|---|---|---|---|---|---|---|---|---|
| 典型钻井 | 金页1井 | 金石103井 | 资201井 | 黄页1井 | 岑页1井、天星1井 | 宜地2井、鄂阳页1井 | 长生1井 | 恩页1井 | 渝科1井、酉科1井 | |
| 层系 | 筇竹寺组 | 筇竹寺组 | 筇竹寺组 | 九门冲组 | 牛蹄塘组 | 水井沱组 | 水井沱组 | 牛蹄塘组 | 牛蹄塘组 | |
| 沉积相 | 浅水-深水陆棚相 | 浅水-深水陆棚相 | 深水陆棚相 | 深水陆棚相 | 深水陆棚相 | 台缘斜坡-深水陆棚相 | 深水陆棚相 | 深水陆棚相 | 深水陆棚相 | |
| 主要岩相 | 黑色炭质页岩夹薄层灰质条带、灰质粉砂岩 | 灰质粉砂岩夹薄层黑色炭质页岩、灰质条带 | 黑色炭质页岩夹薄层粉砂岩 | 黑色炭质硅质页岩 | 黑色炭质页岩、灰黑色硅质页岩 | 灰黑色灰质页岩、炭质页岩、泥质灰岩 | 灰黑色炭质页岩、灰质页岩、含粉砂灰质页岩 | 灰黑色炭质硅质页岩、灰质页岩 | 灰黑色炭质页岩、黑色页岩、硅质页岩 | |
优质页岩 厚度/m | 14.0 | 0 ~ 8.0 | 21.8 ~ 50.8 | 112.0 | 50.0 ~ 70.0 | 66.0 | 70.0 | 135.0 | 50.0 | |
| TOC/% | 0.60 ~ 3.50(1.30) | 0.20 ~ 1.50 | 1.33 ~ 4.80(2.28) | 2.20 ~ 9.50(6.30) | 1.70 ~ 9.60(4.60) | 0.42 ~ 5.96(2.05) | 3.30 ~ 6.40(4.80) | 1.30 ~ 9.20(6.40) | 1.36 ~ 9.81(5.63) | |
| 有机质类型 | Ⅰ | Ⅰ | Ⅰ | Ⅰ | Ⅰ-Ⅱ1 | Ⅰ-Ⅱ1 | Ⅰ | Ⅰ | Ⅰ-Ⅱ1 | |
| EqVRo/% | 2.70 ~ 3.10(2.90) | 2.70 ~ 2.80 | 2.80 ~ 3.20(3.10) | 2.90 ~ 3.40 | 2.20 ~ 4.44(3.51) | 2.18 ~ 2.29(2.25) | 3.50 ~ 4.00 | 3.21 ~ 4.33(3.60) | 2.68 ~ 5.19 | |
| 主要矿物含量/% | 石英 | 28.8 | 50.0 ~ 70.0 | 20.0 ~ 47.0 | 43.4 | 29.6 | 22.9 | 37.6 | 48.3 | 45.9 |
| 黏土矿物 | 41.8 | 20.0 ~ 40.0 | 14.0 ~ 48.0 | 33.4 | 34.2 | 37.6 | 28.0 | 12.8 | 34.8 | |
| 碳酸盐矿物 | 10.0 | 5.0 ~ 10.0 | 2.0 ~ 12.0 | — | 9.5 | 35.8 | 20.3 | 12.0 | 13.0 | |
| 孔隙类型 | 黏土矿物层间孔、有机质孔、微裂缝 | 黏土矿物层间孔、 微裂缝 | 黏土矿物层间孔、有机质孔、微裂缝 | 有机质孔、微裂缝 | 黏土矿物层间孔、有机质孔、 | 粒内溶蚀孔、有机质孔 | 粒内孔、有机质孔、微裂缝 | 粒内孔、有机质孔、微裂缝 | 有机质孔、粒内孔、粒间孔、微裂缝 | |
| 孔隙度/% | 1.79 ~ 5.84(3.41) | 1.79 ~ 3.84(2.96) | 3.10 ~ 5.50(4.28) | 1.48 ~ 4.90(2.80) | 1.70 ~ 3.30(3.14) | 1.10 ~ 9.10(2.83) | 0.24 ~ 2.83(1.21) | 0.71 ~ 3.42(2.13) | 0.90 ~ 2.70 | |
| 保存条件 | 顶、底板完整,超压 | 顶、底板完整,超压 | 顶、底板完整,超压 | 高角度构造缝发育、底板破碎 | 底板不完整,常压 | 构造稳定、裂缝欠发育,顶、底板完整 | 高角度构造缝发育,底板不完整,常压 | 高角度构造缝发育,底板不完整,常压 | 高角度构造缝发育,底板不完整,常压 | |
| 压力系数 | 1.2 | > 1.8 | > 2.0 | — | 0.9 ~ 1.1 | 1.50 ~ 1.78 | — | 0.9 ~ 1.1 | — | |
| 含气性/(m3/t) | 0.53 ~ 4.69(1.68) | 0.61 ~ 2.69 | 7.80 ~ 9.50(8.50) | 0.23 ~ 1.80(0.89) | 0.30 ~ 2.88 | 0.18 ~ 5.58(2.64) | 0.12 ~ 0.16(0.14) | 0.11 ~ 0.39(0.26) | 0.13 ~ 0.26 | |
| 埋深/m | 2 500 ~ 3 500 | 2 500 ~ 3 500 | 4 350 ~ 4 900 | < 2 500 | 1 200 ~2 200 | < 2 500 | < 2 500 | 3 500 ~ 4 000 | < 1 500 | |
| 日产气量/(m3/d) | 40 000 ~ 80 000 | 258 600 | 738 000 | 418 | 3 000 | 78 300 | 未获工业气流 | 未获工业气流 | 未获工业气流 | |
| 综合评价 | TOC高、富有机质页岩厚度较小;高孔隙度、含气性好,获工业页岩气流 | TOC低、富有机质页岩厚度小;低孔隙度、含气性好,获工业页岩气流 | TOC高、富有机质页岩厚度较大;高孔隙度、含气性好,获工业页岩气流 | TOC较高、富有机质厚度较大;低孔隙度、含气性较好,获低页岩气流 | TOC高、富有机质页岩厚度大;低孔隙度、含气性差,未获工业页岩气流 | |||||
| [1] | 张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6): 136-140. |
| ZHANG Jinchuan, XU Bo, NIE Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136-140. | |
| [2] | 聂海宽, 党伟, 张珂, 等. 中国页岩气研究与发展20年: 回顾与展望[J]. 天然气工业, 2024, 44(3): 20-52. |
| NIE Haikuan, DANG Wei, ZHANG Ke, et al. Two decades of shale gas research & development in China: Review and prospects[J]. Natural Gas Industry, 2024, 44(3): 20-52. | |
| [3] | 郑马嘉, 郭兴午, 伍亚, 等. 四川盆地德阳—安岳裂陷槽寒武系筇竹寺组超深层页岩气地质工程一体化高产井培育实践与勘探突破[J]. 中国石油勘探, 2024, 29(3): 58-68. |
| ZHENG Majia, GUO Xingwu, WU Ya, et al. Cultivation practice and exploration breakthrough of geology and engineering integrated high-yield wells of ultra-deep shale gas in the Cambrian Qiongzhusi Formation in Deyang-Anyue aulacogen, Sichuan Basin[J]. China Petroleum Exploration, 2024, 29(3): 58-68. | |
| [4] | 翟刚毅, 包书景, 王玉芳, 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017, 38(4): 441-447. |
| ZHAI Gangyi, BAO Shujing, WANG Yufang, et al. Reservoir accumulation model at the edge of Palaeohigh and significant discovery of shale gas in Yichang area, Hubei province[J]. Acta Geoscientica Sinica, 2017, 38(4): 441-447. | |
| [5] | 王玉芳, 翟刚毅, 冷济高, 等. 贵州岑巩TX1井牛蹄塘组页岩压裂效果评价[J]. 地球科学, 2017, 42(7): 1107-1115. |
| WANG Yufang, ZHAI Gangyi, LENG Jigao, et al. Well TX1 fracturing effect evaluation of Niutitang Formation shale in Cengong, Guizhou[J]. Earth Science, 2017, 42(7): 1107-1115. | |
| [6] | 郭彤楼, 熊亮, 叶素娟, 等. 输导层(体)非常规天然气勘探理论与实践——四川盆地新类型页岩气与致密砂岩气突破的启示[J]. 石油勘探与开发, 2023, 50(1): 24-37. |
| GUO Tonglou, XIONG Liang, YE Sujuan, et al. Theory and practice of unconventional gas exploration in carrier beds: Insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(1): 24-37. | |
| [7] | 何骁, 梁峰, 李海, 等. 四川盆地下寒武统筇竹寺组海相页岩气高产井突破与富集模式[J]. 中国石油勘探, 2024, 29(1): 142-155. |
| HE Xiao, LIANG Feng, LI Hai, et al. Breakthrough and enrichment mode of marine shale gas in the Lower Cambrian Qiongzhusi Formation in high-yield wells in Sichuan Basin[J]. China Petroleum Exploration, 2024, 29(1): 142-155. | |
| [8] | 杨雨然, 石学文, 李彦佑, 等. 四川盆地德阳—安岳裂陷槽筇竹寺组古地貌、沉积模式与勘探方向[J]. 中国石油勘探, 2024, 29(6): 67-81. |
| YANG Yuran, SHI Xuewen, LI Yanyou, et al. Paleogeomorphology, sedimentary pattern and exploration orientation of Qiongzhusi Formation in Deyang-Anyue Rift Trough, Sichuan Basin[J]. China Petroleum Exploration, 2024, 29(6): 67-81. | |
| [9] | 雍锐, 石学文, 罗超, 等. 四川盆地寒武系筇竹寺组页岩气 “槽-隆” 富集规律及勘探前景[J]. 石油勘探与开发, 2024, 51(6): 1211-1226. |
| YONG Rui, SHI Xuewen, LUO Chao, et al. Aulacogen-uplift enrichment pattern and exploration prospect of Cambrian Qiongzhusi Formation shale gas in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2024, 51(6): 1211-1226. | |
| [10] | 聂海宽, 张金川, 李玉喜. 四川盆地及其周缘下寒武统页岩气聚集条件[J]. 石油学报, 2011, 32(6): 959-967. |
| NIE Haikuan, ZHANG Jinchuan, LI Yuxi. Accumulation conditions of the Lower Cambrian shale gas in the Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2011, 32(6): 959-967. | |
| [11] | 刘忠宝, 高波, 张钰莹, 等. 上扬子地区下寒武统页岩沉积相类型及分布特征[J]. 石油勘探与开发, 2017, 44(1): 21-31. |
| LIU Zhongbao, GAO Bo, ZHANG Yuying, et al. Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2017, 44(1): 21-31. | |
| [12] | 刘忠宝, 高波, 胡宗全, 等. 高演化富有机质页岩储层特征及孔隙形成演化——以黔南地区下寒武统九门冲组为例[J]. 石油学报, 2017, 38(12): 1381-1389. |
| LIU Zhongbao, GAO Bo, HU Zongquan, et al. Reservoir characteristics and pores formation and evolution of high maturated organic rich shale: A case study of Lower Cambrian Jiumenchong Formation, southern Guizhou area[J]. Acta Petrolei Sinica, 2017, 38(12): 1381-1389. | |
| [13] | 雍锐, 吴建发, 吴伟, 等. 四川盆地寒武系筇竹寺组页岩气勘探发现及其意义[J]. 石油学报, 2024, 45(9): 1309-1323. |
| YONG Rui, WU Jianfa, WU Wei, et al. Exploration discovery of shale gas in the Cambrian Qiongzhusi Formation of Sichuan Basin and its significance[J]. Acta Petrolei Sinica, 2024, 45(9): 1309-1323. | |
| [14] | LIU Yang, STÜEKEN E E, WANG Dongsheng, et al. A potential linkage between excess silicate-bound nitrogen and N2-rich natural gas in sedimentary reservoirs[J]. Chemical Geology, 2022, 600: 120864. |
| [15] | LIU Zengqin, GUO Shaobin, LV Rui. Shale-gas play risk of the lower Cambrian on the Yangtze platform, South China[J]. AAPG Bulletin, 2020, 104(5): 989-1009. |
| [16] | ZOU Caineng, ZHAO Zhengfu, PAN Songqi, et al. Unveiling the oldest industrial shale gas reservoir: Insights for the enrichment pattern and exploration direction of Lower Cambrian shale gas in the Sichuan Basin[J]. Engineering, 2024, 42: 278-294. |
| [17] | HAN Shuangbiao, BAI Songtao, TANG Zhiyuan, et al. Nitrogen-rich gas shale logging evaluation and differential gas-bearing characterization of Lower Cambrian formation in northern Guizhou, South China[J]. Marine and Petroleum Geology, 2020, 115: 104270. |
| [18] | LI Zhen, ZHANG Jinchuan, GONG Dajian, et al. Gas-bearing property of the Lower Cambrian Niutitang Formation shale and its influencing factors: A case study from the Cengong Block, northern Guizhou Province, South China[J]. Marine and Petroleum Geology, 2020, 120: 104556. |
| [19] | LIU Shugen, DENG Bin, JANSA L, et al. Multi-stage basin development and hydrocarbon accumulations: a review of the Sichuan Basin at eastern margin of the Tibetan Plateau[J]. Journal of Earth Science, 2018, 29(2): 307-325. |
| [20] | ZHAO Jianhua, JIN Zhijun, HU Qinhong, et al. Geological controls on the accumulation of shale gas: A case study of the Early Cambrian shale in the Upper Yangtze area[J]. Marine and Petroleum Geology, 2019, 107: 423-437. |
| [21] | 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. |
| ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293. | |
| [22] | 马奎, 文龙, 张本健, 等. 四川盆地德阳——安岳侵蚀裂陷槽分段性演化分析和油气勘探意义[J]. 石油勘探与开发, 2022, 49(2): 274-284. |
| MA Kui, WEN Long, ZHANG Benjian, et al. Segmented evolution of Deyang-Anyue erosion rift trough in Sichuan Basin and its significance for oil and gas exploration, SW China[J]. Petroleum Exploration and Development, 2022, 49(2): 274-284. | |
| [23] | 谢小敏, 腾格尔, 秦建中, 等. 贵州凯里寒武系底部硅质岩系生物组成、沉积环境与烃源岩发育关系研究[J]. 地质学报, 2015, 89(2): 425-439. |
| XIE Xiaomin, TENGER, QIN Jianzhong, et al. Depositional environment, organisms components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation, Kaili, Guizhou[J]. Acta Geologica Sinica, 2015, 89(2): 425-439. | |
| [24] | 聂海宽, 包书景, 高波, 等. 四川盆地及其周缘下古生界页岩气保存条件研究[J]. 地学前缘, 2012, 19(3): 280-294. |
| NIE Haikuan, BAO Shujing, GAO Bo, et al. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2012, 19(3): 280-294. | |
| [25] | 刘忠宝, 王鹏威, 聂海宽, 等. 中上扬子地区寒武系页岩气富集条件及有利区优选[J]. 中南大学学报(自然科学版), 2022, 53(9): 3694-3707. |
| LIU Zhongbao, WANG Pengwei, NIE Haikuan, et al. Enrichment conditions and favorable prospecting targets of Cambrian shale gas in Middle-Upper Yangtze[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3694-3707. | |
| [26] | 张同伟, 罗欢, 孟康. 我国南方不同地区寒武系页岩含气性差异主控因素探讨[J]. 地学前缘, 2023, 30(3): 1-13. |
| ZHANG Tongwei, LUO Huan, MENG Kang. Main factors controlling the shale gas content of Cambrian shales of southern China—A discussion[J]. Earth Science Frontiers, 2023, 30(3): 1-13. | |
| [27] | ZHAI Gangyi, LI Juan, JIAO Yang, et al. Applications of chemostratigraphy in a characterization of shale gas Sedimentary Microfacies and predictions of sweet spots—Taking the Cambrian black shales in Western Hubei as an example[J]. Marine and Petroleum Geology, 2019, 109: 547-560. |
| [28] | LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. |
| [29] | MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. |
| [30] | LIU Zhongbao, GAO Bo, HU Zongquan, et al. Pore characteristics and formation mechanism of high-maturity organic-rich shale in Lower Cambrian Jiumenchong Formation, southern Guizhou[J]. Petroleum Research, 2018, 3(1): 57-65. |
| [31] | XIAO Zhenghui, LIU Jisong, TAN Jingqiang, et al. Geologic characterization of a lower Cambrian marine shale: Implications for shale gas potential in northwestern Hunan, South China[J]. Interpretation, 2018, 6(3): T635-T647. |
| [32] | CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. |
| [33] | NIE Haikuan, JIN Zhijun, ZHANG Jinchuan. Characteristics of three organic matter pore types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China[J]. Scientific Reports, 2018, 8(1): 7014. |
| [34] | LÖHR S C, BARUCH E T, HALL P A, et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015, 87: 119-132. |
| [35] | NIE Haikuan, JIN Zhijun, SUN Chuanxiang, et al. Organic matter types of the Wufeng and Longmaxi formations in the Sichuan Basin, South China: Implications for the formation of organic matter pores[J]. Energy & Fuels, 2019, 33(9): 8076-8100. |
| [36] | KNAPP L J, ARDAKANI O H, UCHIDA S, et al. The influence of rigid matrix minerals on organic porosity and pore size in shale reservoirs: Upper Devonian Duvernay Formation, Alberta, Canada[J]. International Journal of Coal Geology, 2020, 227: 103525. |
| [37] | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. |
| [38] | SUN Wenjibin, ZUO Yujun, LIN Zhang, et al. Impact of tectonic deformation on shale pore structure using adsorption experiments and 3D digital core observation: A case study of the Niutitang Formation in Northern Guizhou[J]. Energy, 2023, 278: 127724. |
| [39] | 聂海宽, 边瑞康, 张培先, 等. 川东南地区下古生界页岩储层微观类型与特征及其对含气量的影响[J]. 地学前缘, 2014, 21(4): 331-343. |
| NIE Haikuan, BIAN Ruikang, ZHANG Peixian, et al. Micro-types and characteristics of shale reservoir of the Lower Paleozoic in southeast Sichuan Basin, and their effects on the gas content[J]. Earth Science Frontiers, 2014, 21(4): 331-343. | |
| [40] | NIE Haikuan, SUN Chuanxiang, LIU Guangxiang, et al. Dissolution pore types of the Wufeng Formation and the Longmaxi Formation in the Sichuan Basin, South China: Implications for shale gas enrichment[J]. Marine and Petroleum Geology, 2019, 101: 243-251. |
| [41] | 王飞宇, 关晶, 冯伟平, 等. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发, 2013, 40(6): 764-768. |
| WANG Feiyu, GUAN Jing, FENG Weiping, et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6): 764-768. | |
| [42] | 聂海宽, 何发岐, 包书景. 中国页岩气地质特殊性及其勘探对策[J]. 天然气工业, 2011, 31(11): 111-116. |
| NIE Haikuan, HE Faqi, BAO Shujing. Peculiar geological characteristics of shale gas in China and its exploration countermeasures[J]. Natural Gas Industry, 2011, 31(11): 111-116. | |
| [43] | HU Haiyan, ZHANG Tongwei, WIGGINS-CAMACHO J D, et al. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis[J]. Marine and Petroleum Geology, 2015, 59: 114-128. |
| [44] | JIN Zhijun, NIE Haikuan. Evolution history of overpressured and normally pressured shale gas reservoirs in Wufeng Formation-Longmaxi Formation, Sichuan Basin, China: An analysis from the perspective of source and seal coupling mechanism[J]. Energy & Fuels, 2022, 36(18): 10870-10885. |
| [45] | 郑书粲. 中上扬子寒武纪早期有机质来源与类型及微体古生物组合对有机质保存的影响[D]. 武汉: 中国地质大学, 2019. |
| ZHENG Shucan. Origin and type of organic matter, microbial assemblages and their influence on organic matter preservation of Early Cambrian in the Yangtze plate[D]. China University of Geosciences (Wuhan), 2019. | |
| [46] | ZHENG Shucan, CLAUSEN S, FENG Qinglai, et al. Review of organic-walled microfossils research from the Cambrian of China: Implications for global phytoplankton diversity[J]. Review of Palaeobotany and Palynology, 2020, 276: 104191. |
| [47] | 梁狄刚, 郭彤楼, 边立曾, 等. 中国南方海相生烃成藏研究的若干新进展(三) 南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质, 2009, 14(2): 1-19. |
| LIANG Digang, GUO Tonglou, BIAN Lizeng, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 3): Controlling factors on the sedimentary facies and development of Palaeozoic marine source rocks[J]. Marine Origin Petroleum Geology, 2009, 14(2): 1-19. | |
| [48] | MILLIKEN K L, ESCH W L, REED R M, et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(8): 1553-1578. |
| [49] | 聂海宽, 何治亮, 刘光祥, 等. 四川盆地五峰组—龙马溪组页岩气优质储层成因机制[J]. 天然气工业, 2020, 40(6): 31-41. |
| NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Genetic mechanism of high-quality shale gas reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(6): 31-41. | |
| [50] | JIANG Tao, JIN Zhijun, LIU Guangxiang, et al. Source analysis of siliceous minerals and uranium in Early Cambrian shales, South China: Significance for shale gas exploration[J]. Marine and Petroleum Geology, 2019, 102: 101-108. |
| [51] | 郭彤楼. 中国页岩气发展的回顾与思考——从志留系到寒武系[J]. 油气藏评价与发, 2025, 15(3): 339-348. |
| GUO Tonglou. Review and reflection on shale gas development in China: From Silurian to Cambrian[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(3): 339-348. | |
| [52] | KLAVER J, DESBOIS G, LITTKE R, et al. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier shales[J]. Marine and Petroleum Geology, 2015, 59: 451-466. |
| [53] | 张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学:地球科学, 2013, 43(10): 1553-1582. |
| ZHANG Guowei, GUO Anlin, WANG Yuejun, et al. Tectonics of South China continent and its implications[J]. Science China Earth Sciences, 2013, 43(10): 1553-1582. | |
| [54] | 汪泽成, 谢武仁, 姜华, 等. 四川盆地加里东期构造运动幕次及油气地质意义[J]. 海相油气地质, 2023, 28(4): 349-359. |
| WANG Zecheng, XIE Wuren, JIANG Hua, et al. Episodes of Caledonian movement and their significance for hydrocarbon accumulation in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2023, 28(4): 349-359. | |
| [55] | ZHAI Gangyi, WANG Yufang, LIU Guoheng, et al. The Sinian-Cambrian Formation shale gas exploration and practice in southern margin of Huangling paleo-uplift[J]. Marine and Petroleum Geology, 2019, 109: 419-433. |
| [56] | TAO Jia, ZHANG Jinchuan, DANG Wei, et al. The potential of the oldest shale oil in China: Mesoproterozoic Hongshuizhuang and Xiamaling shales in the Yanshan Basin[J]. Energy & Fuels, 2024, 38(24): 23447-23465. |
| [57] | 聂海宽, 张金川, 金之钧, 等. 论海相页岩气富集机理——以四川盆地五峰组—龙马溪组为例[J]. 地质学报, 2024, 98(3): 975-991. |
| NIE Haikuan, ZHANG Jinchuan, JIN Zhijun, et al. Enrichment mechanism of marine shale gas——A case study of the Wufeng Formation-Longmaxi Formation in the Sichuan Basin, SW China[J]. Acta Geologica Sinica, 2024, 98(3): 975-991. | |
| [58] | HAN Yuanjia, MAHLSTEDT N, HORSFIELD B. The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion[J]. AAPG Bulletin, 2015, 99(12): 2173-2202. |
| [59] | JIA Chengzao. Breakthrough and significance of unconventional oil and gas to classical petroleum geology theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-10. |
| [60] | WU Liangliang, WANG Peng, GENG Ansong. Later stage gas generation in shale gas systems based on pyrolysis in closed and semi-closed systems[J]. International Journal of Coal Geology, 2019, 206: 80-90. |
| [61] | MA Zhongliang, TAN Jingqiang, ZHENG Lunju, et al. Evaluating gas generation and preservation of the Wufeng-Longmaxi Formation shale in southeastern Sichuan Basin, China: Implications from semiclosed hydrous pyrolysis[J]. Marine and Petroleum Geology, 2021, 129: 105102. |
| [62] | ZHAO Wenzhi, ZHANG Shuichang, HE Kun, et al. Origin of conventional and shale gas in Sinian-Lower Paleozoic strata in the Sichuan Basin: Relayed gas generation from liquid hydrocarbon cracking[J]. AAPG Bulletin, 2019, 103(6): 1265-1296. |
| [63] | 张莉, 熊永强, 陈媛, 等. 中国典型海相富有机质页岩的生气机理[J]. 地球科学, 2017, 42(7): 1092-1106. |
| ZHANG Li, XIONG Yongqiang, CHEN Yuan, et al. Mechanisms of shale gas generation from typically organic-rich marine shales[J]. Earth Science, 2017, 42(7): 1092-1106. | |
| [64] | LIU Quanyou, JIN Zhijun, WANG Xiaofeng, et al. Distinguishing kerogen and oil cracked shale gas using H, C-isotopic fractionation of alkane gases[J]. Marine and Petroleum Geology, 2018, 91: 350-362. |
| [65] | MAHLSTEDT N. Thermogenic formation of hydrocarbons in sedimentary basins[M]//WILKES H. Biogeochemistry of Hydrocarbons and Lipids. Cham: Springer, 2018: 1-30. |
| [66] | HORSFIELD B, ZOU Caineng, LI Jian, et al. Prediction of the gas-generating characteristics of the Qiongzhusi and Longmaxi formations, Yangtze Platform, southern China, using analogues[J]. AAPG Bulletin, 2021, 105(5): 945-985. |
| [67] | KROOSS B M, LITTKE R, MÜLLER B, et al. Generation of nitrogen and methane from sedimentary organic matter: Implications on the dynamics of natural gas accumulations[J]. Chemical Geology, 1995, 126(3/4): 291-318. |
| [68] | GAI Haifeng, TIAN Hui, CHENG Peng, et al. Characteristics of molecular nitrogen generation from overmature black shales in South China: Preliminary implications from pyrolysis experiments[J]. Marine and Petroleum Geology, 2020, 120: 104527. |
| [69] | 郭彤楼, 邓虎成, 赵爽, 等. 四川盆地寒武系筇竹寺组新类型页岩气形成机理与勘探突破[J]. 石油勘探与开发, 2025, 52(1): 57-69. |
| GUO Tonglou, DENG Hucheng, ZHAO Shuang, et al. Formation mechanisms and exploration breakthroughs of new type of shale gas in Cambrian Qiongzhusi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2025, 52(1): 57-69. | |
| [70] | 杨梅华, 左银辉, 段新国, 等. 四川盆地下寒武统筇竹寺组烃源岩灶演化及其对成藏的启示[J]. 地球科学, 2023, 48(2): 582-595. |
| YANG Meihua, ZUO Yinhui, DUAN Xinguo, et al. Hydrocarbon kitchen evolution of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its enlightenment to hydrocarbon accumulation[J]. Earth Science, 2023, 48(2): 582-595. | |
| [71] | 饶松, 杨轶南, 胡圣标, 等. 川西南地区下寒武统筇竹寺组页岩热演化史及页岩气成藏意义[J]. 地球科学, 2022, 47(11): 4319-4335. |
| RAO Song, YANG Yinan, HU Shengbiao, et al. Thermal evolution history and shale gas accumulation significance of Lower Cambrian Qiongzhusi Formation in southwest Sichuan Basin[J]. Earth Science, 2022, 47(11): 4319-4335. | |
| [72] | 刘树根, 李泽奇, 邓宾, 等. 四川盆地震旦系灯影组深层碳酸盐岩储层沥青赋存形态及其油气藏示踪作用[J]. 天然气工业, 2021, 41(8): 102-112. |
| LIU Shugen, LI Zeqi, DENG Bin, et al. Occurrence morphology of bitumen in Dengying Formation deep and ultra-deep carbonate reservoirs of the Sichuan Basin and its indicating significance to oil and gas reservoirs[J]. Natural Gas Industry, 2021, 41(8): 102-112. | |
| [73] | 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153. |
| WEI Xiangfeng, LI Yuping, WEI Zhihong, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology and Experiment, 2017, 39(2): 147-153. | |
| [74] | FAN Qingqing, LIU Dadong, DU Wei, et al. In situ U-Pb dating of carbonate veins in Cambrian shales constrains fluid flow and hydrocarbon evolution at the southeastern margin of the Upper Yangtze platform, southwestern China[J]. GSA Bulletin, 2024, 136(7/8): 2875-2890. |
| [75] | LI Jianhua, DONG Shuwen, CAWOOD P A, et al. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling[J]. Earth and Planetary Science Letters, 2018, 490: 170-179. |
| [76] | 何治亮, 胡宗全, 聂海宽, 等. 四川盆地五峰组—龙马溪组页岩气富集特征与 “建造—改造” 评价思路[J]. 天然气地球科学, 2017, 28(5): 724-733. |
| HE Zhiliang, HU Zongquan, NIE Haikuan, et al. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J]. Natural Gas Geoscience, 2017, 28(5): 724-733. | |
| [77] | 金之钧, 龙胜祥, 周雁, 等. 中国南方膏盐岩分布特征[J]. 石油与天然气地质, 2006, 27(5): 571-583, 593. |
| JIN Zhijun, LONG Shengxiang, ZHOU Yan, et al. A study on the distribution of saline-deposit in southern China[J]. Oil & Gas Geology, 2006, 27(5): 571-583, 593. | |
| [78] | LIU Wenhui, LI Yining, LIU Quanyou, et al. Roles of gypsum/salt-bearing sequence in hydrocarbon accumulation and storage[J]. Energy Geoscience, 2023, 4(1): 93-102. |
| [79] | 石书缘, 胡素云, 刘伟, 等. 深层古老碳酸盐岩-膏盐岩组合油气成藏特征[J]. 石油勘探与开发, 2024, 51(1): 48-61. |
| SHI Shuyuan, HU Suyun, LIU Wei, et al. Hydrocarbon accumulation in deep ancient carbonate-evaporite assemblages[J]. Petroleum Exploration and Development, 2024, 51(1): 48-61. | |
| [80] | 聂海宽, 金之钧, 边瑞康, 等. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气 “源-盖控藏” 富集[J]. 石油学报, 2016, 37(5): 557-571. |
| NIE Haikuan, JIN Zhijun, BIAN Ruikang, et al. The “source-cap hydrocarbon-controlling” enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2016, 37(5): 557-571. | |
| [81] | JIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-sealing and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 507-526. |
| [82] | 赵珊, 刘华, 杨宪章, 等. 温-压耦合作用下深层盐岩盖层封闭能力演化特征[J]. 石油与天然气地质, 2023, 44(5): 1321-1332. |
| ZHAO Shan, LIU Hua, YANG Xianzhang, et al. Evolutionary characteristics of sealing capacity of deep salt caprocks under temperature-pressure coupling[J]. Oil & Gas Geology, 2023, 44(5): 1321-1332. | |
| [83] | MONTGOMERY S L, JARVIE D M, BOWKER K A, et al. Mississippian Barnett Shale, Fort Worth Basin, north-central Texas: Gas-shale play with multi-trillion cubic foot potential[J]. AAPG Bulletin, 2005, 89(2): 155-175. |
| [84] | 谢丹. 井研-犍为地区筇竹寺组页岩气富集条件研究[D]. 成都: 成都理工大学, 2016. |
| XIE Dan. The study on shale gas accumulation conditions of Qiongzhusi Formation in Jingyan-Qianwei area[D]. Chengdu: Chengdu University of Technology, 2016. | |
| [85] | BOWKER K A. Barnett Shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533. |
| [86] | NIE Haikuan, LI Donghui, LIU Guangxiang, et al. An overview of the geology and production of the Fuling shale gas field, Sichuan Basin, China[J]. Energy Geoscience, 2020, 1(3/4): 147-164. |
| [87] | GAO Jian, HE Sheng, ZHAO Jianxin, et al. Sm-Nd isochron dating and geochemical (rare earth elements, 87Sr/86Sr, δ18O, δ13C) characterization of calcite veins in the Jiaoshiba shale gas field, China: Implications for the mechanisms of vein formation in shale gas systems[J]. GSA Bulletin, 2020, 132(7/8): 1722-1740. |
| [88] | NIE Haikuan, HE Zhiliang, WANG Ruyue, et al. Temperature and origin of fluid inclusions in shale veins of Wufeng-Longmaxi formations, Sichuan Basin, South China: Implications for shale gas preservation and enrichment[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107329. |
| [89] | 李彦佑, 吴娟, 周志鹏, 等. 四川盆地德阳—安岳裂陷槽中段寒武系筇竹寺组页岩气差异富集过程-来自裂缝脉体与流体包裹体的证据[J]. 石油实验地质, 2025, 47(5): 988-1002. |
| LI Yanyou, WU Juan, ZHOU Zhipeng, et al. Differential enrichment process of shale gas in Cambrian Qiongzhusi Formation in middle section of Deyang-Anyue rift trough, Sichuan Basin: Evidence from fracture veins and fluid inclusions[J]. Petroleum Geology & Experiment, 2025, 47(5): 988-1002. | |
| [90] | 秦建中, 申宝剑, 付小东, 等. 海相优质烃源岩[M]. 北京: 科学出版社, 2024. |
| QIN Jianzhong, SHEN Baojian, FU Xiaodong, et al. Marine high-quality hydrocarbon source rocks[M]. Beijing: Science Press, 2024. | |
| [91] | LI Shuangjian, SUN Wei, LI Yingqiang, et al. Hydrocarbon accumulation conditions and exploration targets of the Sinian Dengying Formation in the southeastern Sichuan Basin[J]. Energy Geoscience, 2023, 4(3): 100154. |
| [92] | NIE Haikuan, JIN Zhijun, LI Pei, et al. Deep shale gas in the Ordovician-Silurian Wufeng-Longmaxi formations of the Sichuan Basin, SW China: Insights from reservoir characteristics, preservation conditions and development strategies[J]. Journal of Asian Earth Sciences, 2023, 244: 105521. |
| [93] | 彭平安, 贾承造. 深层烃源演化与原生轻质油/凝析油气资源潜力[J]. 石油学报, 2021, 42(12): 1543-1555. |
| PENG Pingan, JIA Chengzao. Evolution of deep source rock and resource potential of primary light oil and condensate[J]. Acta Petrolei Sinica, 2021, 42(12): 1543-1555. |
| [1] | 郭彤楼, 董晓霞, 魏力民, 黄思钦, 冯少柯. 深层-超深层海相页岩气差异富集与高产机理[J]. 石油与天然气地质, 2025, 46(6): 1792-1806. |
| [2] | 姚红生, 张培先, 何希鹏, 高玉巧, 高全芳, 万静雅, 周頔娜. 四川盆地及其周缘地区五峰组-龙马溪组页岩气藏类型及勘探实践[J]. 石油与天然气地质, 2025, 46(6): 1807-1822. |
| [3] | 魏志红, 石文斌, 王道军, 陈超, 刘晓晶, 王东升, 刘苗苗, 黎承银. 四川盆地侏罗系自流井组-凉高山组常-非一体多类型储层有序分布及油气成藏规律[J]. 石油与天然气地质, 2025, 46(6): 1823-1839. |
| [4] | 卢龙飞, 刘旺威, 刘伟新, 鲍芳, 周圆圆, 俞凌杰, 申宝剑. 四川盆地二叠系大隆组硅质页岩碳酸盐交代作用及其对页岩储层发育的影响[J]. 石油与天然气地质, 2025, 46(6): 1860-1873. |
| [5] | 杜心宇, 钱门辉, 刘雅慧, 亓华胜, 朱峰, 李志明, 俞凌杰, 李楚雄, 张文涛, 冷筠滢. 四川盆地复兴地区中-下侏罗统陆相页岩储层流体赋存规律与源-储耦合特征[J]. 石油与天然气地质, 2025, 46(6): 1874-1891. |
| [6] | 高波, 戎佳, 张明何, 刘自亮, 燕继红, 杜伟, 李王鹏. 川北地区下寒武统筇竹寺组页岩岩相类型及分布特征[J]. 石油与天然气地质, 2025, 46(6): 1892-1906. |
| [7] | 王光付, 王海波, 郭建春, 谢凌志, 徐克, 李凤霞, 周彤, 陈世敬. 四川盆地侏罗系湖相页岩油气压裂开采技术难点与展望[J]. 石油与天然气地质, 2025, 46(6): 2026-2040. |
| [8] | 胡宗全, 王倩茹, 申宝剑, 冯动军, 杜伟, 孙川翔. 四川盆地下古生界五峰组-龙马溪组海相页岩气储层孔隙分类及特征[J]. 石油与天然气地质, 2025, 46(3): 705-718. |
| [9] | 谭谦, 袁海锋, 王涛, 马自立, 唐渤钧, 彭秋, 李文杰. 深层白云岩储层溶蚀作用成因及其对储层的影响[J]. 石油与天然气地质, 2025, 46(3): 809-826. |
| [10] | 苏楠, 陈竹新, 翟咏荷, 潘颖, 王丽宁, 任荣, 张宇轩, 谢武仁, 武赛军. 四川盆地北部前陆构造叠加区正断层成因机制[J]. 石油与天然气地质, 2025, 46(2): 478-490. |
| [11] | 康家豪, 王兴志, 曾德铭, 黄梓桑, 朱逸青, 李博, 谢圣阳, 张芮. 岩相对于湖相页岩孔隙结构特征及孔隙演化的控制机理[J]. 石油与天然气地质, 2025, 46(2): 491-509. |
| [12] | 王继远, 王斌, 胡宗全, 商丰凯, 刘德志, 李振明, 邱岐, 宋振响, 胡志啟. 深层-超深层碎屑岩优质储层成因机理[J]. 石油与天然气地质, 2025, 46(1): 151-166. |
| [13] | 郭杰, 肖笛, 罗冰, 张本健, 陈骁, 张玺华, 李明隆, 谭秀成. 川东地区中二叠世茅口组台-槽分异演化及常规-非常规天然气勘探有利区新发现[J]. 石油与天然气地质, 2025, 46(1): 192-210. |
| [14] | 王馨佩, 刘成林, 蒋立伟, 冯德浩, 邹辰, 刘飞, 李君军, 贺昱搏, 董明祥, 焦鹏飞. 渝西大安地区五峰组-龙马溪组深层页岩微观孔隙结构与含气性控制因素[J]. 石油与天然气地质, 2025, 46(1): 230-245. |
| [15] | 吴丰, 梁芸, 唐松, 李昱翰, 田兴旺, 杨辉廷, 李锋. 深层含沥青溶孔-溶洞型碳酸盐岩微观导电特性[J]. 石油与天然气地质, 2025, 46(1): 288-303. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||