石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (6): 1980-1997.doi: 10.11743/ogg20250615
李军亮1,2(
), 刘惠民2,3, 魏晓亮4(
), 张奎华2,3, 张鹏飞2,3, 秦峰1,2, 王勇1,2, 张顺1,2, 李政1,2, 刘鑫金1,2, 王伟庆1,2, 孟伟1,5
收稿日期:2025-08-21
修回日期:2025-11-03
出版日期:2025-12-30
发布日期:2025-12-25
通讯作者:
魏晓亮
E-mail:lijunliang.slyt@sinopec.com;dylanweixl@foxmail.com
第一作者简介:李军亮(1973—),男,博士、研究员,石油地质学。E‑mail: lijunliang.slyt@sinopec.com。
基金项目:
Junliang LI1,2(
), Huimin LIU2,3, Xiaoliang WEI4(
), Kuihua ZHANG2,3, Pengfei ZHANG2,3, Feng QIN1,2, Yong WANG1,2, Shun ZHANG1,2, Zheng LI1,2, Xinjin LIU1,2, Weiqing WANG1,2, Wei MENG1,5
Received:2025-08-21
Revised:2025-11-03
Online:2025-12-30
Published:2025-12-25
Contact:
Xiaoliang WEI
E-mail:lijunliang.slyt@sinopec.com;dylanweixl@foxmail.com
摘要:
以渤海湾盆地济阳坳陷沙河街组咸化湖盆页岩为研究对象,用扫描电镜(SEM)、阴极发光(CL)以及能谱分析(EDS)等多种手段,系统研究自生矿物特征及其对微观孔隙演化的控制机制。研究表明:①粗晶或次生加大方解石在碱性成岩环境下大量沉淀,导致孔隙度显著下降。②虽然成岩白云石含量低且呈分散状,但碱性胶结阶段酸性流体改造作用的减弱,间接抑制了孔隙保存。③铁白云石多形成于富 亚铁离子(Fe2+)的酸性环境,常与伊利石化及钠化作用伴生。钠长石和铁白云石虽本身不直接作为孔隙载体,却与面孔率呈显著正相关,体现了酸性流体改造与矿物转化的协同效应。④伊利石是重要的孔隙载体,其片状或纤维状集合体在酸性环境中有助于粒间孔、层理面及微裂缝孔隙的形成与连通。⑤自生石英除细微充填形态外,还可形成特殊的脉状集合体,为周围孔隙结构提供刚性支撑,减缓后期压实作用和胶结作用对孔隙的破坏。⑥沙河街组页岩孔隙演化受酸性阶段“溶蚀-增孔”和碱性阶段“胶结-减孔”交替主导,不同自生矿物组合及其空间分布可作为评价储层孔隙保存潜力的重要指标。
中图分类号:
图4
济阳坳陷沙河街组页岩典型自生矿物光学显微及扫描电镜照片a.F120井,埋深3 277.40 m,纤维状粗晶方解石纹层,透镜状粗晶方解石纹层及方解石矿脉充填高角度裂缝,透射光,普通薄片;b.F120井,埋深3 277.40 m,粗晶方解石纹层及高角度方解石脉,扫描电镜;c.F120井,埋深3 277.40 m,纤维状粗晶方解石纹层,扫描电镜;d.N55X1-1井,埋深3 584.12 m,具有“纸房结构”的多孔伊利石,扫描电镜;e.N55X1-1井,埋深3 584.12 m,条带状伊利石发育极少孔隙,扫描电镜;f.FYP1井,埋深3 472.14 m,成岩白云石,扫描电镜;g.FYP1井,埋深3 472.14 m,自生钠长石表面不发育孔隙,扫描电镜;h.FYP1井,埋深3 472.14 m,自生铁白云石,表面不发育孔隙,扫描电镜;i.F120井,埋深3 264.29 m,自生铁白云石包裹沉积铁白云石,沉积铁白云石中发育少量孔隙,扫描电镜;j.N55X1-1井,埋深3 584.12 m,多种晶体类型自生石英,自生石英之间发育粒间孔,扫描电镜;k.N55X1-5井,埋深3 608.76 m,陆源碎屑石英与自生石英共存,不发育孔隙,扫描电镜;l.为自生石英和陆源石英的阴极发光谱图,其中蓝色曲线为图j中自生石英颗粒(+标记处)阴极发光谱图,红色曲线为图k中陆源石英颗粒(+标记处)阴极发光谱图"
图12
济阳坳陷沙河街组纹层中石英形貌参数与面孔率的相关性a.方解石纹层,绿色区域为面孔率高值区,该区域纹层中石英集合体具有适中的等效直径(1.77 ~ 2.26)和形貌因子(2.88 ~ 3.16),蓝色区域为面孔率低值区,该区域中纹层中石英集合体具有较高等效直径(1.91 ~ 2.28)和较低形貌因子(2.53 ~ 2.87),红色区域为面孔率中等区域,该区域中该区域中纹层中石英集合体具有较低等效直径(1.55 ~ 1.63)和较高形貌因子(3.09 ~ 3.14); b. 泥质纹层,纹层中面孔率随着形貌因子的增大和等效直径的降低而升高(图中ED为矿物颗粒等效直径,MF为形貌因子。)"
图13
济阳坳陷沙河街组钠长石及铁白云石表面特征及含量分布a, b.页岩中钠长石扫描电镜图像,钠长石表面无孔隙,部分边缘表现出较好的晶体形态,部分边缘表现出磨圆;c.不同纹层中钠长石质量占比统计:方解石纹层中钠长石质量占比介于0.05% ~ 7.67%,平均值为1.82%,而泥质纹层中钠长石质量占比介于3.3% ~ 18.36%,平均值为8.66%;d, e. 页岩中铁白云石扫描电镜图像,铁白云石表面无孔隙,部分颗粒边缘表现出较好晶体形态,部分颗粒边缘表现出磨圆;f. 不同纹层中铁白云石质量占比统计:方解石纹层中铁白云石质量占比介于0 ~ 1.05%,平均值为0.29%,而泥质纹层中铁白云石质量占比介于0 ~ 9.85%,平均值为2.62%"
| [1] | 郭旭升, 申宝剑, 王鹏威, 等. 基于源-储单元的页岩油气甜点段评价优选新思路[J]. 石油与天然气地质, 2025, 46(1): 1-14. |
| GUO Xusheng, SHEN Baojian, WANG Pengwei, et al. A new approach to the evaluation and optimal selection of shale oil and gas sweet-spot intervals based on source rock-reservoir units[J]. Oil & Gas Geology, 2025, 46(1): 1-14. | |
| [2] | 胡宗全, 刘忠宝, 李倩文, 等. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨——以四川盆地侏罗系页岩层段为例[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
| HU Zongquan, LIU Zhongbao, LI Qianwen, et al. Exploring source rock-reservoir coupling mechanisms in lacustrine shales based on varying-scale lithofacies assemblages: A case study of the Jurassic shale intervals in the Sichuan Basin[J]. Oil & Gas Geology, 2024, 45(4): 893-909. | |
| [3] | BRISTOW T F, KENNEDY M J, MORRISON K D, et al. The influence of authigenic clay formation on the mineralogy and stable isotopic record of lacustrine carbonates[J]. Geochimica et Cosmochimica Acta, 2012, 90: 64-82. |
| [4] | CHEN Lei, JIANG Zhenxue, LIU Keyu, et al. Effect of lithofacies on gas storage capacity of marine and continental shales in the Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 36(Part A): 773-785. |
| [5] | MILLIKEN K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84(12): 1185-1199. |
| [6] | TANG Xianglu, JIANG Zhenxue, JIANG Shu, et al. Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods[J]. Marine and Petroleum Geology, 2016, 78: 99-109. |
| [7] | ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin, China: Implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks[J]. Marine and Petroleum Geology, 2017, 86: 655-674. |
| [8] | SUN Mengdi, ZHAO Jiale, PAN Zhejun, et al. Pore characterization of shales: A review of small angle scattering technique[J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103294. |
| [9] | XIONG Zhouhai, CAO Yingchang, LIANG Chao, et al. Origin and significance of authigenic quartz and albite in lacustrine calcareous fine-grained sedimentary rocks[J]. Marine and Petroleum Geology, 2022, 143: 105799. |
| [10] | 任文希, 曾小军, 王光付, 等. 陆相页岩有机质-黏土矿物复合孔隙体系中多组分烃类-水混合物赋存的分子模拟——以四川盆地侏罗系自流井组大安寨段为例[J]. 石油与天然气地质, 2025, 46(1): 304-314. |
| REN Wenxi, ZENG Xiaojun, WANG Guangfu, et al. Molecular simulations of a multicomponent hydrocarbon-water mixture in the organic matter-clay mineral composite pore system of lacustrine shales: A case study of the Da’anzhai Member of the Jurassic Ziliujing Formation, Sichuan Basin[J]. Oil & Gas Geology, 2025, 46(1): 304-314. | |
| [11] | 林中凯, 张少龙, 李传华, 等. 湖相页岩油地层岩相组合类型划分及其油气勘探意义——以博兴洼陷沙河街组为例[J]. 油气藏评价与开发, 2023, 13(1): 39-51. |
| LIN Zhongkai, ZHANG Shaolong, LI Chuanhua, et al. Types of shale lithofacies assemblage and its significance for shale oil exploration: A case study of Shahejie Formation in Boxing Sag[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 39-51. | |
| [12] | 赵仁文, 肖佃师, 卢双舫, 等. 高—过成熟陆相断陷盆地页岩与海相页岩储层特征对比- 以徐家围子断陷沙河子组和四川盆地龙马溪组为例[J]. 油气藏评价与开发, 2023, 13(1): 52-63, 99. |
| ZHAO Renwen, XIAO Dianshi, LU Shuangfang, et al. Comparison of reservoir characteristics between continental shale from faulted basin and marine shale under high-over mature stage: Taking Shahezi Formation in Xujiaweizi faulted basin and Longmaxi Formation in Sichuan Basin as an example[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 52-63, 99. | |
| [13] | ZHANG Shun, LIU Huimin, LIU Yali, et al. Main controls and geological sweet spot types in Paleogene shale oil rich areas of the Jiyang Depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2020, 111: 576-587. |
| [14] | LIU Huimin, ZHANG Shun, SONG Guoqi, et al. Effect of shale diagenesis on pores and storage capacity in the Paleogene Shahejie Formation, Dongying Depression, Bohai Bay Basin, east China[J]. Marine and Petroleum Geology, 2019, 103: 738-752. |
| [15] | 刘惠民, 包友书, 张守春, 等. 陆相富碳酸盐页岩结构特征与页岩油可动性——以济阳坳陷古近系沙河街组页岩为例[J]. 石油勘探与开发, 2023, 50(6): 1150-1161. |
| LIU Huimin, BAO Youshu, ZHANG Shouchun, et al. Structural characteristics of continental carbonate-rich shale and shale oil movability: A case study of the Paleogene Shahejie Formation shale in Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2023, 50(6): 1150-1161. | |
| [16] | 郭旭升, 马晓潇, 黎茂稳, 等. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
| GUO Xusheng, MA Xiaoxiao, LI Maowen, et al. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins[J]. Oil & Gas Geology, 2023, 44(6): 1333-1349. | |
| [17] | ZHANG Shun, LIU Huimin, WANG Min, et al. Shale pore characteristics of Shahejie Formation: Implication for pore evolution of shale oil reservoirs in Dongying Sag, North China[J]. Petroleum Research, 2019, 4(2): 113-124. |
| [18] | 李政. 陆相盆地不同岩性页岩含油性及可动性比较——以渤海湾盆地东营凹陷古近系沙四上亚段为例[J]. 石油实验地质, 2020, 42(4): 545-551, 595. |
| LI Zheng. Comparison of oil-bearing properties and oil mobility of shale with different lithologies in continental basins: A case study of the upper fourth member of Paleogene Shahejie Formation in Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology and Experiment, 2020, 42(4): 545-551, 595. | |
| [19] | ZHANG Tongwei, ELLIS G S, RUPPEL S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry, 2012, 47: 120-131. |
| [20] | 滕建彬, 邱隆伟, 张守鹏, 等. 济阳坳陷古近系沙河街组湖相富有机质页岩白云石成因及成岩演化[J]. 石油勘探与开发, 2022, 49(6): 1080-1093. |
| TENG Jianbin, QIU Longwei, ZHANG Shoupeng, et al. Origin and diagenetic evolution of dolomites in Paleogene Shahejie Formation lacustrine organic shale of Jiyang Depression, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2022, 49(6): 1080-1093. | |
| [21] | 李超, 罗晓容. 泥岩化学压实作用研究进展[J]. 地球科学与环境学报, 2017, 39(6): 761-772. |
| LI Chao, LUO Xiaorong. Review on mudstone chemical compaction[J]. Journal of Earth Sciences and Environment, 2017, 39(6): 761-772. | |
| [22] | MIAO Zhuowei, ZHANG Kuihua, ZHANG Pengfei, et al. The staged growth of bedding-parallel fibrous calcite veins, from synsedimentary period to oil-generative window[J]. Marine and Petroleum Geology, 2024, 160: 106660. |
| [23] | LUAN Guoqiang, DONG Chunmei, AZMY K, et al. Origin of bedding-parallel fibrous calcite veins in lacustrine black shale: A case study from Dongying Depression, Bohai Bay Basin[J]. Marine and Petroleum Geology, 2019, 102: 873-885. |
| [24] | NIE Haikuan, LIU Quanyou, LI Pei, et al. Quartz types, formation mechanism, and its effect on shale oil and gas enrichment: A review[J]. Earth-Science Reviews, 2025, 261: 105011. |
| [25] | MILLIKEN K L, ERGENE S M, OZKAN A. Quartz types, authigenic and detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA[J]. Sedimentary Geology, 2016, 339: 273-288. |
| [26] | ZHANG Pengfei, ZHANG Kuihua, MIAO Zhuowei, et al. Early diagenetic origin of authigenic quartz in lacustrine calcareous shale of the Shahejie formation, Eastern China: implications for shale reservoirs[J]. Carbonates and Evaporites, 2024, 39(4): 107. |
| [27] | 刘国恒. 湖相泥页岩自生石英形成机理及对储层性质的影响[D]. 北京: 中国石油大学(北京), 2017. |
| LIU Guoheng. The formation mechanism of authigenic quartz in lacustrine shale and influence to reservoir property[D]. Beijing: China University of Petroleum (Beijing), 2017. | |
| [28] | CHEN Xianglin, SHI Wanzhong, HU Qinhong, et al. Origin of authigenic quartz in organic-rich shales of the Niutitang Formation in the northern margin of Sichuan Basin, South China: Implications for pore network development[J]. Marine and Petroleum Geology, 2022, 138: 105548. |
| [29] | 李军亮, 王民, 秦峰, 等. 陆相富碳酸盐页岩纹层组合对页岩油富集的控制作用——以渤海湾盆地济阳坳陷古近系沙河街组页岩为例[J]. 石油与天然气地质, 2025, 46(2): 392-406. |
| LI Junliang, WANG Min, QIN Feng, et al. Controlling effects of lamina assemblages on shale oil enrichment for lacustrine carbonate-rich shales: A case study of shales in the Paleogene Shahejie Formation, Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2025, 46(2): 392-406. | |
| [30] | 孔政, 程紫燕, 乔俊程, 等. 东营凹陷牛庄洼陷古近系不同纹层组合富碳酸盐页岩的微观储渗能力[J]. 中国石油大学学报(自然科学版), 2025, 49(2): 68-81. |
| KONG Zheng, CHENG Ziyan, QIAO Juncheng, et al. Microscopic storage and seepage capacities in laminated carbonaceous shale of Paleogene in Niuzhuang sub-sag, Dongying Sag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2025, 49(2): 68-81. | |
| [31] | 刘惠民. 济阳坳陷古近系页岩油地质特殊性及勘探实践——以沙河街组四段上亚段—沙河街组三段下亚段为例[J]. 石油学报, 2022, 43(5): 581-594. |
| LIU Huimin. Geological particularity and exploration practice of Paleogene shale oil in Jiyang Depression: A case study of the upper submember of Member 4 to the lower submember of Member 3 of Shahejie Formation[J]. Acta Petrolei Sinica, 2022, 43(5): 581-594. | |
| [32] | 王勇. 济阳坳陷古近系沙三下—沙四上亚段咸化湖盆证据及页岩油气地质意义[J]. 中国石油大学学报(自然科学版), 2024, 48(3): 27-36. |
| WANG Yong. Evidence of Paleogene saline lake basin in the 3rd and 4th members of Shahejie Formation in Jiyang Depression and geological significance of shale oil and gas[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(3): 27-36. | |
| [33] | CURTIS C D, COLEMAN M L, LOVE L G. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions[J]. Geochimica et Cosmochimica Acta, 1986, 50(10): 2321-2334. |
| [34] | MOZLEY P S, DAVIS J M. Internal structure and mode of growth of elongate calcite concretions: Evidence for small-scale, microbially induced, chemical heterogeneity in groundwater[J]. GSA Bulletin, 2005, 117(11/12): 1400-1412. |
| [35] | GHAFUR A A. The origin, differential diagenesis and microporosity characteristics of carbonate mud across a Late Paleogene ramp (Iraqi Kurdistan region)[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107247. |
| [36] | MOZLEY P S. The internal structure of carbonate concretions in mudrocks: A critical evaluation of the conventional concentric model of concretion growth[J]. Sedimentary Geology, 1996, 103(1/2): 85-91. |
| [37] | MUNNECKE A, WRIGHT V P, NOHL T. The origins and transformation of carbonate mud during early marine burial diagenesis and the fate of aragonite: A stratigraphic sedimentological perspective[J]. Earth-Science Reviews, 2023, 239: 104366. |
| [38] | LIU Huimin, ZHANG Shun, LIU Yali, et al. Characteristics of lithofacies combinations and reservoir property of carbonate-rich shale in Dongying Depression, eastern China[J]. Frontiers in Earth Science, 2022, 10: 857729. |
| [39] | MILLIKEN K L, DAY-STIRRAT R J. Cementation in mudrocks: Brief review with examples from cratonic basin mudrocks[M]//CHATELLIER J Y, JARVIE D M. Critical Assessment of Shale Resource Plays. Tulsa: American Association of Petroleum Geologists, 2013: 133-150. |
| [40] | 刘惠民, 孙善勇, 操应长, 等. 东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J]. 油气地质与采收率, 2017, 24(1): 1-10. |
| LIU Huimin, SUN Shanyong, CAO Yingchang, et al. Lithofacies characteristics and distribution model of fine-grained sedimentary rock in the lower Es3 member, Dongying sag[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 1-10. | |
| [41] | 王勇, 刘惠民, 宋国奇, 等. 湖相泥页岩中碳酸盐成因及页岩油气地质意义——以东营凹陷沙河街组四段上亚段—沙河街组三段下亚段烃源岩为例[J]. 石油学报, 2017, 38(12): 1390-1400. |
| WANG Yong, LIU Huimin, SONG Guoqi, et al. Carbonate genesis and geological significance of shale hydrocarbon in lacustrine facies mud shale: A case study of source rocks in the upper submember of Member 4 and lower submember of Member 3 of Shahejie Formation, Dongying Sag[J]. Acta Petrolei Sinica, 2017, 38(12): 1390-1400. | |
| [42] | ZHAO Ziru, DONG Chunmei, MA Pengjie, et al. Origin of dolomite in lacustrine organic-rich shale: A case study in the Shahejie Formation of the Dongying Sag, Bohai Bay Basin[J]. Frontiers in Earth Science, 2022, 10: 909107. |
| [43] | CAO Yingchang, YUAN Guanghui, LI Xiaoyan, et al. Characteristics and origin of abnormally high porosity zones in buried Paleogene clastic reservoirs in the Shengtuo area, Dongying Sag, East China[J]. Petroleum Science, 2014, 11(3): 346-362. |
| [44] | LI Yingli, CAI Jingong, WANG Xuejun, et al. Smectite-illitization difference of source rocks developed in saline and fresh water environments and its influence on hydrocarbon generation: A study from the Shahejie Formation, Dongying Depression, China[J]. Marine and Petroleum Geology, 2017, 80: 349-357. |
| [45] | 孟元林, 黄文彪, 王粤川, 等. 超压背景下粘土矿物转化的化学动力学模型及应用[J]. 沉积学报, 2006, 24(4): 461-467. |
| MENG Yuanlin, HUANG Wenbiao, WANG Yuechuan, et al. A kinetic model of clay mineral transformation in overpressure setting and its applications[J]. Acta Sedimentologica Sinica, 2006, 24(4): 461-467. | |
| [46] | 李晓霞, 谷渊涛, 万泉, 等. 泥页岩中有机质-黏土复合体的微观结构、变形作用及源-储意义[J]. 石油与天然气地质, 2023, 44(2): 452-467. |
| LI Xiaoxia, GU Yuantao, WAN Quan, et al. Micro-architecture, deformation and source-reservoir significance of organic-clay composites in shale[J]. Oil & Gas Geology, 2023, 44(2): 452-467. | |
| [47] | LIU Guoheng, LIU Keyu, ZHAI Gangyi, et al. Crystallinity and formation of silica in Palaeozoic shales: A new quantification calculation method based on X-Ray diffraction[J]. Marine and Petroleum Geology, 2023, 150: 106124. |
| [48] | REMY R R, FERRELL R E. Distribution and Origin of Analcime in Marginal Lacustrine Mudstones of the Green River Formation, South-Central Uinta Basin, Utah[J]. Clays and Clay Minerals, 1989, 37(5): 419-432. |
| [49] | ZHANG Zongxuan, JIANG Zaixing, YANG Yepeng. Coevolution of minerals in lacustrine mudstone during diagenesis: A case study of the Dongying Depression in the Bohai Bay Basin[J]. Frontiers in Earth Science, 2025, 13: 1502476. |
| [1] | 郭旭升, 赵培荣, 张宇, 申宝剑, 李倩文, 李沛, 李雄, 钱恪然, 蔡生娟, 马晓潇, 李鹏. 中国陆相页岩油分类分级评价的现状、挑战与发展趋势[J]. 石油与天然气地质, 2025, 46(6): 1745-1761. |
| [2] | 张宇, 李军, 王烽, 张永, 王敏, 孙伟. 中国石化页岩层系石油探明储量申报实践与思考[J]. 石油与天然气地质, 2025, 46(6): 1762-1777. |
| [3] | 郭彤楼, 董晓霞, 魏力民, 黄思钦, 冯少柯. 深层-超深层海相页岩气差异富集与高产机理[J]. 石油与天然气地质, 2025, 46(6): 1792-1806. |
| [4] | 姚红生, 张培先, 何希鹏, 高玉巧, 高全芳, 万静雅, 周頔娜. 四川盆地及其周缘地区五峰组-龙马溪组页岩气藏类型及勘探实践[J]. 石油与天然气地质, 2025, 46(6): 1807-1822. |
| [5] | 聂海宽, 苏海琨, 张珂, 林拓, 刘忠宝, 李沛, 戎佳, 王宇哲. 古老地层页岩气富集特征与勘探方向——来自中-上扬子地区寒武系的启示[J]. 石油与天然气地质, 2025, 46(6): 1840-1859. |
| [6] | 卢龙飞, 刘旺威, 刘伟新, 鲍芳, 周圆圆, 俞凌杰, 申宝剑. 四川盆地二叠系大隆组硅质页岩碳酸盐交代作用及其对页岩储层发育的影响[J]. 石油与天然气地质, 2025, 46(6): 1860-1873. |
| [7] | 杜心宇, 钱门辉, 刘雅慧, 亓华胜, 朱峰, 李志明, 俞凌杰, 李楚雄, 张文涛, 冷筠滢. 四川盆地复兴地区中-下侏罗统陆相页岩储层流体赋存规律与源-储耦合特征[J]. 石油与天然气地质, 2025, 46(6): 1874-1891. |
| [8] | 高波, 戎佳, 张明何, 刘自亮, 燕继红, 杜伟, 李王鹏. 川北地区下寒武统筇竹寺组页岩岩相类型及分布特征[J]. 石油与天然气地质, 2025, 46(6): 1892-1906. |
| [9] | 孙川翔, 张珂, 聂海宽, 苏海琨, 万成祥, 边瑞康, 俞凌杰, 杨振恒. 川东五峰组-龙马溪组深层-超深层页岩储层特征与差异[J]. 石油与天然气地质, 2025, 46(6): 1907-1926. |
| [10] | 何希鹏, 昝灵, 高玉巧, 蔡潇, 陈鹏, 花彩霞, 白鸾羲, 张琬璐. 苏北盆地低有机碳含量陆相页岩层系页岩油富集高产机理与成藏模式[J]. 石油与天然气地质, 2025, 46(6): 1927-1946. |
| [11] | 高玉巧, 蔡潇, 夏威, 马晓东, 昝灵, 花彩霞, 李辉, 朱一川, 王雨梦. 苏北盆地古近系泰州组二段页岩油储层差异成储机理[J]. 石油与天然气地质, 2025, 46(6): 1947-1959. |
| [12] | 刘惠民, 李军亮, 刘鑫金, 于福生, 闫嘉杰, 王勇, 任嘉, 冯海风, 魏晓亮, 杨晨. 渤海湾盆地东营凹陷沙四上亚段-沙三下亚段页岩裂缝发育特征及成因机制[J]. 石油与天然气地质, 2025, 46(6): 1960-1979. |
| [13] | 王恩泽, 黎茂稳, 唐勇, 马晓潇, 钱门辉, 曹婷婷, 李志明, 付英潇, 金之钧. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组陆相页岩油甜点评价与立体开发可行性分析[J]. 石油与天然气地质, 2025, 46(6): 1998-2011. |
| [14] | 孙中良, 李志明, 何文军, 冷筠滢, 祝庆敏, 刘得光, 王濡岳. 准噶尔盆地玛湖凹陷风城组页岩源-储协同演化机理[J]. 石油与天然气地质, 2025, 46(6): 2012-2025. |
| [15] | 王光付, 王海波, 郭建春, 谢凌志, 徐克, 李凤霞, 周彤, 陈世敬. 四川盆地侏罗系湖相页岩油气压裂开采技术难点与展望[J]. 石油与天然气地质, 2025, 46(6): 2026-2040. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||