石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (5): 1321-1336.doi: 10.11743/ogg20240509
蒋前前1,2(), 吴娟1(), 王恒1, 匡龙伟1, 周志鹏1, 杨雨然3, 李彦佑3, 罗超3, 邓宾1, 焦堃1
收稿日期:
2024-01-12
修回日期:
2024-07-15
出版日期:
2024-10-30
发布日期:
2024-11-06
通讯作者:
吴娟
E-mail:Jiangqianqian1124@163.com;wujuan16@cdut.edu.cn
第一作者简介:
蒋前前(1997—),男,硕士研究生,页岩气成藏过程与机理。E-mail: Jiangqianqian1124@163.com。
基金项目:
Qianqian JIANG1,2(), Juan WU1(), Heng WANG1, Longwei KUANG1, Zhipeng ZHOU1, Yuran YANG3, Yanyou LI3, Chao LUO3, Bin DENG1, Kun JIAO1
Received:
2024-01-12
Revised:
2024-07-15
Online:
2024-10-30
Published:
2024-11-06
Contact:
Juan WU
E-mail:Jiangqianqian1124@163.com;wujuan16@cdut.edu.cn
摘要:
为研究川南地区下志留统龙马溪组有机质热演化特征,根据钻井、岩性和温度实验数据,研究了现今地温场特征,利用激光拉曼光谱测定计算了龙马溪组页岩有机质镜质体反射率,以镜质体反射率(Ro)为约束,用BasinMod盆地数值模拟技术重建了该区热流史及龙马溪组有机质热演化史。研究结果表明,川南地区龙马溪组储层沥青激光拉曼镜质体反射率(RmcRo)为2.7 % ~ 3.9 %,有机质现均已到过成熟阶段,平面上从威远—泸州—长宁区块成熟度逐渐增加。加里东期大部分有机质尚未进入生烃门限。东吴期—印支期威远北部及渝西北部有机质处于低成熟-成熟阶段,同期长宁—宁西及泸州南部有机质分别进入高成熟和过成熟阶段。燕山期川南龙马溪组有机质普遍达到过成熟阶段。川南地区龙马溪组有机质热演化受古地貌、古埋深、峨眉山玄武岩喷发及构造隆升等地质因素的共同影响,其中古埋深及峨眉山玄武岩喷发是有机质热演化最主要的控制因素。
中图分类号:
表2
川南地区典型钻井龙马溪组页岩固体沥青激光拉曼镜质体反射率"
井号 | 埋深/m | Ro | ||
---|---|---|---|---|
分布范围/% | 平均值/% | 测点数/个 | ||
Z203 | 2 685 ~ 3 005 | 2.34 ~ 2.92 | 2.75 | 16 |
HS1 | 3 905 ~ 3 930 | 2.91 ~ 3.22 | 3.10 | 8 |
RC1 | 3 775 | 2.98 ~ 3.24 | 3.09 | 5 |
L202 | 4 224 ~ 4 274 | 3.25 ~ 3.42 | 3.34 | 21 |
Y202 | 3 150 ~ 3 505 | 3.08 ~ 3.50 | 3.37 | 20 |
H202 | 4 081 | 3.52 ~ 3.68 | 3.59 | 5 |
JYT1 | 4 264 ~ 4 316 | 3.37 ~ 3.58 | 3.45 | 25 |
TT1 | 3 446 ~ 3 426 | 3.39 ~ 3.50 | 3.42 | 25 |
N237 | 2 900 ~ 2 982 | 3.39 ~ 3.57 | 3.44 | 19 |
N240 | 4 461 | 3.75 ~ 3.87 | 3.82 | 4 |
表4
川南地区关键构造期龙马溪组有机质成熟度及生烃阶段"
地区 | 加里东期 | 东吴期 | 印支期 | 燕山期 | ||||
---|---|---|---|---|---|---|---|---|
Ro/% | 生烃阶段 | Ro/% | 生烃阶段 | Ro/% | 生烃阶段 | Ro/% | 生烃阶段 | |
长宁区块主体 | 0.40 ~ 0.52 | 部分生成低熟油 | 1.00 ~ 1.38 | 大量生油、 凝析油及湿气 | 1.81 ~ 2.11 | 湿气-干气 | 3.37 ~ 3.80 | 干气 |
宁西区块及长宁 区块西翼 | 0.35 ~ 0.50 | 未进入生烃门限 | 0.70 ~ 1.15 | 大量生油 | 1.56 ~ 2.61 | 湿气-干气 | 3.06 ~ 3.40 | 干气 |
泸州区块 | 0.45 ~ 0.52 | 部分生成低熟油 | 0.82 ~ 1.59 | 大量生油、 凝析油及湿气 | 1.23 ~ 2.50 | 大量生油末期、 干气 | 2.91 ~ 3.19 | 干气 |
渝西区块 | 0.34 ~ 0.47 | 未进入生烃门限 | 0.75 ~ 0.82 | 大量生油 | 1.29 ~ 1.36 | 凝析油及湿气 | 3.41 ~ 3.52 | 干气 |
威远区块 | 0.35 ~ 0.50 | 未进入生烃门限 | 0.54 ~ 0.87 | 低成熟油、 大量生油早期 | 0.89 ~ 1.43 | 大量生油、 凝析油及湿气 | 2.71 ~ 3.06 | 干气 |
1 | 邹才能, 杨智, 孙莎莎, 等. “进源找油”: 论四川盆地页岩油气[J]. 中国科学: 地球科学, 2020, 50(7): 903-920. |
ZOU Caineng, YANG Zhi, SUN Shasha, et al. “Exploring petroleum inside source kitchen”: Shale oil and gas in Sichuan Basin[J]. Science China Earth Sciences, 2020, 50(7): 903-920. | |
2 | 刘树根, 邓宾, 孙玮, 等. 四川盆地是 “超级” 的含油气盆地吗?[J]. 西华大学学报(自然科学版), 2020, 39(5): 20-35. |
LIU Shugen, DENG Bin, SUN Wei, et al. May Sichuan Basin be a super petroliferous basin?[J]. Journal of Xihua University(Natural Science Edition), 2020, 39(5): 20-35. | |
3 | JIANG Qiang, QIU Nansheng, ZHU Chuanqing. Heat flow study of the Emeishan large igneous province region: Implications for the geodynamics of the Emeishan mantle plume[J]. Tectonophysics, 2018, 724/725: 11-27. |
4 | 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(8): 2892-2910. |
JIANG Guangzheng, GAO Peng, RAO Song, et al. Compilation of heat flow data in the continental area of China (4th edition)[J]. Chinese Journal of Geophysics, 2016, 59(8): 2892-2910. | |
5 | 李春荣, 饶松, 胡圣标, 等. 川东南焦石坝页岩气区现今地温场特征[J]. 地球物理学报, 2017, 60(2): 617-627. |
LI Chunrong, RAO Song, HU Shengbiao, et al. Present-day geothermal field of the Jiaoshiba shale gas area in southeast of the Sichuan Basin, SW China[J]. Chinese Journal of Geophysics, 2017, 60(2): 617-627. | |
6 | 徐明, 朱传庆, 田云涛, 等. 四川盆地钻孔温度测量及现今地热特征[J]. 地球物理学报, 2011, 54(4): 1052-1060. |
XU Ming, ZHU Chuanqing, TIAN Yuntao, et al. Borehole temperature logging and characteristics of subsurface temperature in the Sichuan Basin[J]. Chinese Journal of Geophysics, 2011, 54(4): 1052-1060. | |
7 | 朱传庆, 田云涛, 徐明, 等. 峨眉山超级地幔柱对四川盆地烃源岩热演化的影响[J]. 地球物理学报, 2010, 53(1): 119-127. |
ZHU Chuanqing, TIAN Yuntao, XU Ming, et al. The effect of Emeishan supper mantle plume to the thermal evolution of source rocks in the Sichuan Basin[J]. Chinese Journal of Geophysics, 2010, 53(1): 119-127. | |
8 | HACKLEY P C, ARAUJO C V, BORREGO A G, et al. Standardization of reflectance measurements in dispersed organic matter: Results of an exercise to improve interlaboratory agreement[J]. Marine and Petroleum Geology, 2015, 59: 22-34. |
9 | LIU Bei, MASTALERZ M, SCHIEBER J. SEM petrography of dispersed organic matter in black shales: A review[J]. Earth-Science Reviews, 2022, 224: 103874. |
10 | TANG Xianglu, JIANG Zhenxue, JIANG Shu, et al. Effect of organic matter and maturity on pore size distribution and gas storage capacity in high-mature to post-mature shales[J]. Energy & Fuels, 2016, 30(11): 8985-8996. |
11 | 孟江辉, 吕沛熙, 吴伟, 等. 基于笔石表皮体反射率和拉曼光谱评价海相页岩热成熟度的方法——以川南下古生界五峰组-龙马溪组为例[J]. 石油与天然气地质, 2022, 43(6): 1515-1528. |
MENG Jianghui, Peixi LYU, WU Wei, et al. A method for evaluating the thermal maturity of marine shale based on graptolite reflectance and Raman spectroscopy: A case from the Lower Palaeozoic Wufeng-Longmaxi Formations, southern Sichuan Basin, SW China[J]. Oil & Gas Geology, 2022, 43(6): 1515-1528. | |
12 | 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510. |
ZHAO Wenzhi, LI Jianzhong, YANG Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510. | |
13 | 焦堃, 谢国梁, 裴文明, 等. 四川盆地下古生界黑色页岩纳米孔隙形态的影响因素及其地质意义[J]. 高校地质学报, 2019, 25(6): 847-859. |
JIAO Kun, XIE Guoliang, PEI Wenming, et al. The control factors and geological implications of the nanopore morphology of the Lower Paleozoic black shales in the Sichuan Basin, China[J]. Geological Journal of China Universities, 2019, 25(6): 847-859. | |
14 | 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. |
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. | |
15 | 吴娟, 陈学忠, 刘文平, 等. 川南五峰组-龙马溪组页岩流体活动及压力演化过程[J]. 地球科学, 2022, 47(2): 518-531. |
WU Juan, CHEN Xuezhong, LIU Wenping, et al. Fluid activity and pressure evolution process of Wufeng-Longmaxi shales, southern Sichuan basin[J]. Earth Science, 2022, 47(2): 518-531. | |
16 | 王红岩, 周尚文, 赵群, 等. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
WANG Hongyan, ZHOU Shangwen, ZHAO Qun, et al. Enrichment characteristics, exploration and exploitation progress, and prospects of deep shale gas in the southern Sichuan Basin, China[J]. Oil & Gas Geology, 2023, 44(6): 1430-1441. | |
17 | LUO Qingyong, FARIBORZ G, ZHONG Ningning, et al. Graptolites as fossil geo-thermometers and source material of hydrocarbons: An overview of four decades of progress[J]. Earth-Science Reviews, 2020, 200: 103000. |
18 | 陈尚斌, 左兆喜, 朱炎铭, 等. 页岩气储层有机质成熟度测试方法适用性研究[J]. 天然气地球科学, 2015, 26(3): 564-574. |
CHEN Shangbin, ZUO Zhaoxi, ZHU Yanming, et al. Applicability of the testing method for the maturity of organic matter in shale gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(3): 564-574. | |
19 | 史洪亮, 王同, 陈霞, 等. 川南下古生界高演化页岩成熟度指标[J]. 断块油气田, 2018, 25(1): 43-47. |
SHI Hongliang, WANG Tong, CHEN Xia, et al. Research on thermal maturity indicators of Lower Palaeozoic over-mature shale in southern Sichuan area[J]. Fault-Block Oil and Gas Field, 2018, 25(1): 43-47. | |
20 | 王河锦, 周钊, 王玲, 等. 伊利石结晶度Kübler指数的校正与近变质带的确定[J]. 地质学报, 2015, 89(2): 406-411. |
WANG Hejin, ZHOU Zhao, WANG Ling, et al. Calibration of illite crystallinity Kübler index and determination of anchizone[J]. Acta Geologica Sinica, 2015, 89(2): 406-411. | |
21 | HAO Jingyue, ZHONG Ningning, LUO Qingyong, et al. Raman spectroscopy of graptolite periderm and its potential as an organic maturity indicator for the Lower Paleozoic in southwestern China[J]. International Journal of Coal Geology, 2019, 213: 103278. |
22 | 王朋飞, 金璨, 臧小鹏, 等. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏, 2020, 32(5): 46-53. |
WANG Pengfei, JIN Can, ZANG Xiaopeng, et al. Development characteristics and evolution of organic matter pores of marine shale in southeastern Chongqing[J]. Lithologic Reservoirs, 2020, 32(5): 46-53. | |
23 | 王玉满, 李新景, 陈波, 等. 海相页岩有机质炭化的热成熟度下限及勘探风险[J]. 石油勘探与开发, 2018, 45(3): 385-395. |
WANG Yuman, LI Xinjing, CHEN Bo, et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development, 2018, 45(3): 385-395. | |
24 | 李纯泉, 陈红汉, 肖雪薇, 等. 四川盆地中部高石梯-磨溪地区震旦系灯影组储层沥青拉曼光谱分析[J]. 石油与天然气地质, 2022, 43(2): 456-466. |
LI Chunquan, CHEN Honghan, XIAO Xuewei, et al. Raman spectroscopy of bitumen from the Sinian Dengying Formation reservoirs, Gaoshiti-Moxi area, central Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 456-466. | |
25 | 董军, 刘树根, 卿萍, 等. 川北阆中地区震旦系-寒武系油气成藏条件与过程[J]. 科学技术与工程, 2021, 21(30): 12879-12889. |
DONG Jun, LIU Shugen, QING Ping, et al. Conditions and process of hydrocarbon accumulation in Sinian-Cambrian in Langzhong area, North Sichuan[J]. Science Technology and Engineering, 2021, 21(30): 12879-12889. | |
26 | 柳卓, 郝芳, 刘鑫, 等. 川南宁西地区龙一段高密度甲烷包裹体发育特征及地质意义[J]. 地球科学, 2021, 46(9): 3157-3171. |
LIU Zhuo, HAO Fang, LIU Xin, et al. Development characteristics and geological significance of high density methane inclusions in the Longmaxi member I in the Ningxi area, southern Sichuan Basin[J]. Earth Science, 2021, 46(9): 3157-3171. | |
27 | 施振生, 赵圣贤, 赵群, 等. 川南地区下古生界五峰组-龙马溪组含气页岩岩心裂缝特征及其页岩气意义[J]. 石油与天然气地质, 2022, 43(5): 1087-1101. |
SHI Zhensheng, ZHAO Shengxian, ZHAO Qun, et al. Fractures in cores from the Lower Paleozoic Wufeng-Longmaxi shale in southern Sichuan Basin and their implications for shale gas exploration[J]. Oil & Gas Geology, 2022, 43(5): 1087-1101. | |
28 | 董敏, 郭伟, 张林炎, 等. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51. |
DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi Formation in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1): 43-51. | |
29 | 闫建平, 罗静超, 石学文, 等. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71. |
YAN Jianping, LUO Jingchao, SHI Xuewen, et al. Fracture development models and significance of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(6): 60-71. | |
30 | 江强, 朱传庆, 邱楠生, 等. 川南地区热史及下寒武统筇竹寺组页岩热演化特征[J]. 天然气地球科学, 2015, 26(8): 1563-1570. |
JIANG Qiang, ZHU Chuanqing, QIU Nansheng, et al. Paleo-heat flow and thermal evolution of the Lower Cambrian Qiongzhusi shale in the southern Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2015, 26(8): 1563-1570. | |
31 | 曹虎威, 祝海华, 刘竞, 等. 川西南复杂构造区震旦系-寒武系油气保存条件[J]. 石油地质与工程, 2022, 36(5): 46-51+56. |
CAO Huwei, ZHU Haihua, LIU Jing, et al. Preservation conditions of Sinian-Cambrian oil and gas in complex structural area of Southwest Sichuan[J]. Petroleum Geology and Engineering, 2022, 36(5): 46-51+56. | |
32 | 袁玉松, 孙冬胜, 李双建, 等. 四川盆地加里东期剥蚀量恢复[J]. 地质科学, 2013, 48(3): 581-591. |
YUAN Yusong, SUN Dongsheng, LI Shuangjian, et al. Caledonian erosion thickness reconstruction in the Sichuan Basin[J]. Chinese Journal of Geology, 2013, 48(3): 581-591. | |
33 | 朱传庆, 徐明, 单竞男, 等. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量[J]. 中国地质, 2009, 36(6): 1268-1277. |
ZHU Chuanqing, XU Ming, SHAN Jingnan, et al. Quantifying the denudations of major tectonic events in Sichuan Basin: Constrained by the paleothermal records[J]. Geology in China, 2009, 36(6): 1268-1277. | |
34 | 邓宾, 刘树根, 刘顺, 等. 四川盆地地表剥蚀量恢复及其意义[J]. 成都理工大学学报(自然科学版), 2009, 36(6): 675-686. |
DENG Bin, LIU Shugen, LIU Shun, et al. Restoration of exhumation thickness and its significance in Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2009, 36(6): 675-686. | |
35 | 王恒, 邓宾, 吴娟, 等. 四川盆地南部地表剥蚀量——基于古温标与声波时差法证据[J]. 地质论评, 2023, 69(): 90-92. |
WANG Heng, DENG Bin, WU Juan, et al. Surface exhumation thickness in the southern Sichuan Basin——Based on the date of paleo-temperature indicators and interval transit time method[J]. Geological Review, 2023, 69(S1): 90-92. | |
36 | LIU Wenping, WU Juan, JIANG Hua, et al. Cenozoic exhumation and shale-gas enrichment of the Wufeng-Longmaxi Formation in the southern Sichuan Basin, western China[J]. Marine and Petroleum Geology, 2021, 125: 104865. |
37 | 王茂林, 肖贤明, 魏强, 等. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J]. 天然气地球科学, 2015, 26(9): 1712-1718. |
WANG Maolin, XIAO Xianming, WEI Qiang, et al. Thermal maturation of solid bitumen in shale as revealed by Raman spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9): 1712-1718. | |
38 | ZUO Zhaoxi, CAO Jian, HU Wenxuan, et al. Characterizing the maturity of highly evolved organic matter based on aromatic hydrocarbons and optimization with pyrobitumen reflectance and Raman spectral parameters[J]. Science China Earth Sciences, 2022, 65(12): 2335-2357. |
39 | 刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241. |
LIU Dehan, XIAO Xianming, TIAN Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1228-1241. | |
40 | 江青春, 胡素云, 姜华, 等. 四川盆地中二叠统茅口组地层缺失量计算及成因探讨[J]. 天然气工业, 2018, 38(1): 21-29. |
JIANG Qingchun, HU Suyun, JIANG Hua, et al. Calculation and inducement of lacuna in the Mid-Permian Maokou Fm of the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(1): 21-29. | |
41 | FENG Qianqian, QIU Nansheng, FU Xiaodong, et al. Permian geothermal units in the Sichuan Basin: Implications for the thermal effect of the Emeishan mantle plume[J]. Marine and Petroleum Geology, 2021, 132: 105226. |
42 | QIU Nansheng, LIU Wen, FU Xiaodong, et al. Maturity evolution of Lower Cambrian Qiongzhusi Formation shale of the Sichuan Basin[J]. Marine and Petroleum Geology, 2021, 128: 105061. |
43 | SWEENEY J J, BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin, 1990, 74(10): 1559-1570. |
44 | 杨梅华, 左银辉, 段新国, 等. 四川盆地下寒武统筇竹寺组烃源岩灶演化及其对成藏的启示[J]. 地球科学, 2023, 48(2): 582-595. |
YANG Meihua, ZUO Yinhui, DUAN Xinguo, et al. Hydrocarbon kitchen evolution of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its enlightenment to hydrocarbon accumulation[J]. Earth Science, 2023, 48(2): 582-595. | |
45 | 饶松, 杨轶南, 胡圣标, 等. 川西南地区下寒武统筇竹寺组页岩热演化史及页岩气成藏意义[J]. 地球科学, 2022, 47(11): 4319-4335. |
RAO Song, YANG Yinan, HU Shengbiao, et al. Thermal evolution history and shale gas accumulation significance of Lower Cambrian Qiongzhusi Formation in southwest Sichuan Basin[J]. Earth Science, 2022, 47(11): 4319-4335. | |
46 | 邱楠生, 常健, 冯乾乾, 等. 我国中西部盆地深层-超深层烃源岩热演化研究[J]. 地学前缘, 2023, 30(6): 199-212. |
QIU Nansheng, CHANG Jian, FENG Qianqian, et al. Maturation history of deep and ultra-deep source rocks, central and western basins, China[J]. Earth Science Frontiers, 2023, 30(6): 199-212. | |
47 | 杜宇健, 萧德云. Kriging算法在温度场计算中的应用分析[J]. 计算机辅助设计与图形学学报, 2004, 16(8): 1153-1158. |
DU Yujian, XIAO Deyun. Application analysis of Kriging in the calculation of temperature field[J]. Journal of Computer-Aided Design & Computer Graphics, 2004, 16(8): 1153-1158. | |
48 | 徐秋晨. 四川盆地中西部海相地层热演化研究[D]. 北京: 中国石油大学(北京), 2018. |
XU Qiuchen. Thermal evolution of marine strata in the central and western Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2018. | |
49 | CHEN Shangbin, ZHU Yanming, CHEN Si, et al. Hydrocarbon generation and shale gas accumulation in the Longmaxi Formation, Southern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2017, 86: 248-258. |
50 | 张琴, 赵群, 罗超, 等. 有机质石墨化及其对页岩气储层的影响——以四川盆地南部海相页岩为例[J]. 天然气工业, 2022, 42(10): 25-36. |
ZHANG Qin, ZHAO Qun, LUO Chao, et al. Effect of graphitization of organic matter on shale gas reservoirs: Take the marine shales in the southern Sichuan Basin as examples[J]. Natural Gas Industry, 2022, 42(10): 25-36. | |
51 | 梁峰. 中上扬子地区五峰组—龙马溪组页岩气富集模式及有利区优选评价[D]. 徐州: 中国矿业大学, 2018. |
LIANG Feng. The research on shale gas enrichment pattern and the favorable area optimizing of Wufeng-Longmaxi shale in Middle and Upper Yangtze Region[D]. Xuzhou: China University of Mining and Technology, 2018. | |
52 | 何丽娟, 黄方, 刘琼颖, 等. 四川盆地早古生代构造热演化特征[J]. 地球科学与环境学报, 2014, 36(2): 10-17. |
HE Lijuan, HUANG Fang, LIU Qiongying, et al. Tectono-thermal evolution of Sichuan Basin in Early Paleozoic[J]. Journal of Earth Sciences and Environment, 2014, 36(2): 10-17. | |
53 | HE Lijuan. Emeishan mantle plume and its potential impact on the Sichuan Basin: Insights from numerical modeling[J]. Physics of the Earth and Planetary Interiors, 2022, 323: 106841. |
54 | HU Huang, HUYSKENS M H, YIN Qingzhu, et al. Eruptive tempo of Emeishan large igneous province, southwestern China and northern Vietnam: Relations to biotic crises and paleoclimate changes around the Guadalupian-Lopingian boundary[J]. Geology, 2022, 50(9): 1083-1087. |
55 | HE Bin, XU Yigang, CHUNG S L, et al. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts[J]. Earth and Planetary Science Letters, 2003, 213(3/4): 391-405. |
56 | 刘冉, 罗冰, 李亚, 等. 川西地区二叠系火山岩展布与茅口组岩溶古地貌关系及其油气勘探意义[J]. 石油勘探与开发, 2021, 48(3): 575-585. |
LIU Ran, LUO Bing, LI Ya, et al. Relationship between Permian volcanic rocks distribution and karst paleogeomorphology of Maokou Formation and its significance for petroleum exploration in western Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(3): 575-585. | |
57 | 马新华, 杨雨, 张健, 等. 四川盆地二叠系火山碎屑岩气藏勘探重大发现及其启示[J]. 天然气工业, 2019, 39(2): 1-8. |
MA Xinhua, YANG Yu, ZHANG Jian, et al. A major discovery in Permian volcanic rock gas reservoir exploration in the Sichuan Basin and its implications[J]. Natural Gas Industry, 2019, 39(2): 1-8. | |
58 | 施振生, 袁渊, 赵群, 等. 川南地区五峰组—龙马溪组沉积期古地貌及含气页岩特征[J]. 天然气地球科学, 2022, 33(12): 1969-1985. |
SHI Zhensheng, YUAN Yuan, ZHAO Qun, et al. Paleogeomorphology and oil-bearing shale characteristics of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Natural Gas Geoscience, 2022, 33(12): 1969-1985. |
[1] | 冯德浩, 刘成林, 杨海波, 韩杨, 杨小艺, 苏加佳, 李国雄, 张景坤. 准噶尔盆地东部中二叠统咸化湖相烃源岩生气潜力及天然气勘探意义[J]. 石油与天然气地质, 2024, 45(5): 1289-1304. |
[2] | 张洪, 冯有良, 刘畅, 杨智, 伍坤宇, 龙国徽, 姚健欢, 孟博文, 邢浩婷, 蒋文琦, 王小妮, 魏琪钊. 柴达木盆地干柴沟地区古近系下干柴沟组上段页岩层系优势岩相及其控储因素[J]. 石油与天然气地质, 2024, 45(5): 1305-1320. |
[3] | 王威, 刘珠江, 魏富彬, 李飞. 川东北地区二叠系大隆组页岩储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1355-1367. |
[4] | 张琴, 邱振, 赵群, 董大忠, 刘雯, 孔维亮, 庞正炼, 高万里, 蔡光银, 李永洲, 李星涛, 林文姬. 海-陆过渡相与海相页岩气“甜点段”差异特征与形成机理[J]. 石油与天然气地质, 2024, 45(5): 1400-1416. |
[5] | 倪良田, 杜玉山, 蒋龙, 孙红霞, 程紫燕, 刘祖鹏, 钟建华, 曹增辉, 马存飞. 渤海湾盆地济阳坳陷陆相断陷湖盆中-低成熟度页岩“富烃-成储-富集-高产”的理论认识与开发实践[J]. 石油与天然气地质, 2024, 45(5): 1417-1430. |
[6] | 龚训, 金之钧, 马新华, 刘钰洋, 李关访, 缪欢. 川南地区志留系龙马溪组页岩力学性质及微观破裂机理[J]. 石油与天然气地质, 2024, 45(5): 1447-1455. |
[7] | 刘国勇, 薛建勤, 吴松涛, 伍坤宇, 张博策, 邢浩婷, 张娜, 庞鹏, 朱超. 柴达木盆地柴西坳陷古近系-新近系石油地质特征与油气环带状分布模式[J]. 石油与天然气地质, 2024, 45(4): 1007-1017. |
[8] | 解馨慧, 邓虎成, 胡蓝霄, 李勇, 毛金昕, 刘佳杰, 张鑫, 李柏洋. 湖相细粒沉积岩颗粒微观力学特征及类型划分[J]. 石油与天然气地质, 2024, 45(4): 1079-1088. |
[9] | 张琴, 卢东连, 王凯, 刘畅, 郭明强, 张梦婕, 郭超杰, 王颖, 胡文忠, 朱筱敏. 下扬子地区荷塘组细粒沉积岩岩相划分及微观孔隙发育特征[J]. 石油与天然气地质, 2024, 45(4): 1089-1105. |
[10] | 李倩文. 渤海湾盆地东营凹陷古近系沙河街组页岩储层润湿性及其主控因素[J]. 石油与天然气地质, 2024, 45(4): 1142-1154. |
[11] | 李一波, 陈耀旺, 赵金洲, 王志强, 魏兵, Valeriy Kadet. 超临界二氧化碳与页岩相互作用机制[J]. 石油与天然气地质, 2024, 45(4): 1180-1194. |
[12] | 朱筱敏, 王晓琳, 张美洲, 林兴悦, 张琴. 中国典型陆相盆地细粒沉积环境和岩相特征[J]. 石油与天然气地质, 2024, 45(4): 873-892. |
[13] | 胡宗全, 刘忠宝, 李倩文, 吴舟凡. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
[14] | 施振生, 周天琪. 海相细粒沉积成因机制与有机质富集模式研究进展[J]. 石油与天然气地质, 2024, 45(4): 910-928. |
[15] | 叶玥豪, 陈伟, 汪华, 宋金民, 明盈, 戴鑫, 李智武, 孙豪飞, 马小刚, 刘婷婷, 唐辉, 刘树根. 四川盆地上二叠统大隆组页岩储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 979-991. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||